ترغب بنشر مسار تعليمي؟ اضغط هنا

IBM Federated Learning: an Enterprise Framework White Paper V0.1

180   0   0.0 ( 0 )
 نشر من قبل Heiko Ludwig
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place, for reasons of privacy, confidentiality or data volume. However, solving federated machine learning problems raises issues above and beyond those of centralized machine learning. These issues include setting up communication infrastructure between parties, coordinating the learning process, integrating party results, understanding the characteristics of the training data sets of different participating parties, handling data heterogeneity, and operating with the absence of a verification data set. IBM Federated Learning provides infrastructure and coordination for federated learning. Data scientists can design and run federated learning jobs based on existing, centralized machine learning models and can provide high-level instructions on how to run the federation. The framework applies to both Deep Neural Networks as well as ``traditional approaches for the most common machine learning libraries. {proj} enables data scientists to expand their scope from centralized to federated machine learning, minimizing the learning curve at the outset while also providing the flexibility to deploy to different compute environments and design custom fusion algorithms.

قيم البحث

اقرأ أيضاً

Federated learning allows multiple participants to collaboratively train an efficient model without exposing data privacy. However, this distributed machine learning training method is prone to attacks from Byzantine clients, which interfere with the training of the global model by modifying the model or uploading the false gradient. In this paper, we propose a novel serverless federated learning framework Committee Mechanism based Federated Learning (CMFL), which can ensure the robustness of the algorithm with convergence guarantee. In CMFL, a committee system is set up to screen the uploaded local gradients. The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy. Based on the different considerations of model performance and defense, two opposite selection strategies are designed for the sake of both accuracy and robustness. Extensive experiments illustrate that CMFL achieves faster convergence and better accuracy than the typical Federated Learning, in the meanwhile obtaining better robustness than the traditional Byzantine-tolerant algorithms, in the manner of a decentralized approach. In addition, we theoretically analyze and prove the convergence of CMFL under different election and selection strategies, which coincides with the experimental results.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
Federated learning enables a global machine learning model to be trained collaboratively by distributed, mutually non-trusting learning agents who desire to maintain the privacy of their training data and their hardware. A global model is distributed to clients, who perform training, and submit their newly-trained model to be aggregated into a superior model. However, federated learning systems are vulnerable to interference from malicious learning agents who may desire to prevent training or induce targeted misclassification in the resulting global model. A class of Byzantine-tolerant aggregation algorithms has emerged, offering varying degrees of robustness against these attacks, often with the caveat that the number of attackers is bounded by some quantity known prior to training. This paper presents Simeon: a novel approach to aggregation that applies a reputation-based iterative filtering technique to achieve robustness even in the presence of attackers who can exhibit arbitrary behaviour. We compare Simeon to state-of-the-art aggregation techniques and find that Simeon achieves comparable or superior robustness to a variety of attacks. Notably, we show that Simeon is tolerant to sybil attacks, where other algorithms are not, presenting a key advantage of our approach.
While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train D NNs on distributed datasets, which employs federated learning (FL) with differentially-private stochastic gradient descent (DPSGD), and, in combination with secure aggregation, can establish a better trade-off between differential privacy (DP) guarantee and DNNs accuracy than other approaches. Results on a diabetic retinopathy~(DR) task show that Dopamine provides a DP guarantee close to the centralized training counterpart, while achieving a better classification accuracy than FL with parallel DP where DPSGD is applied without coordination. Code is available at https://github.com/ipc-lab/private-ml-for-health.
185 - Rulin Shao , Hongyu He , Hui Liu 2019
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to ta ke control over their sensitive information during both training and using processes. To address this problem, we propose a privacy-preserving method for the distributed system, Stochastic Channel-Based Federated Learning (SCBF), which enables the participants to train a high-performance model cooperatively without sharing their inputs. Specifically, we design, implement and evaluate a channel-based update algorithm for the central server in a distributed system, which selects the channels with regard to the most active features in a training loop and uploads them as learned information from local datasets. A pruning process is applied to the algorithm based on the validation set, which serves as a model accelerator. In the experiment, our model presents better performances and higher saturating speed than the Federated Averaging method which reveals all the parameters of local models to the server when updating. We also demonstrate that the saturating rate of performance could be promoted by introducing a pruning process. And further improvement could be achieved by tuning the pruning rate. Our experiment shows that 57% of the time is saved by the pruning process with only a reduction of 0.0047 in AUCROC performance and a reduction of 0.0068 in AUCPR.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا