ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-exponential tunneling due to mean-field induced swallowtails

68   0   0.0 ( 0 )
 نشر من قبل Qingze Guan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Typically, energy levels change without bifurcating in response to a change of a control parameter. Bifurcations can lead to loops or swallowtails in the energy spectrum. The simplest quantum Hamiltonian that supports swallowtails is a non-linear $2 times 2$ Hamiltonian with non-zero off-diagonal elements and diagonal elements that depend on the population difference of the two states. This work implements such a Hamiltonian experimentally using ultracold atoms in a moving one-dimensional optical lattice. Self-trapping and non-exponential tunneling probabilities, a hallmark signature of band structures that support swallowtails, are observed. The good agreement between theory and experiment validates the optical lattice system as a powerful platform to study, e.g., Josephson junction physics and superfluidity in ring-shaped geometries.



قيم البحث

اقرأ أيضاً

This article provides a focused review of recent findings which demonstrate, in some cases quite counter-intuitively, the existence of bound states with a singularity of the density pattern at the center, while the states are physically meaningful be cause their total norm converges. One model of this type is based on the 2D Gross-Pitaevskii equation (GPE) which combines the attractive potential ~ 1/r^2 and the quartic self-repulsive nonlinearity, induced by the Lee-Huang-Yang effect (quantum fluctuations around the mean-field state). The GPE demonstrates suppression of the 2D quantum collapse, driven by the attractive potential, and emergence of a stable ground state (GS), whose density features an integrable singularity ~1/r^{4/3} at r --> 0. Modes with embedded angular momentum exist too, and they have their stability regions. A counter-intuitive peculiarity of the model is that the GS exists even if the sign of the potential is reversed from attraction to repulsion, provided that its strength is small enough. This peculiarity finds a relevant explanation. The other model outlined in the review includes 1D, 2D, and 3D GPEs, with the septimal (seventh-order), quintic, and cubic self-repulsive terms, respectively. These equations give rise to stable singular solitons, which represent the GS for each dimension D, with the density singularity ~1/r^{2/(4-D). Such states may be considered as a result of screening of a bare delta-functional attractive potential by the respective nonlinearity.
We use the ab initio Bethe Ansatz dynamics to predict the dissociation of one-dimensional cold-atom breathers that are created by a quench from a fundamental soliton. We find that the dissociation is a robust quantum many-body effect, while in the me an-field (MF) limit the dissociation is forbidden by the integrability of the underlying nonlinear Schr{o}dinger equation. The analysis demonstrates the possibility to observe quantum many-body effects without leaving the MF range of experimental parameters. We find that the dissociation time is of the order of a few seconds for a typical atomic-soliton setting.
We introduce an effectively one-dimensional (1D) model of a bosonic gas of particles carrying collinear dipole moments which are induced by an external polarizing field with the strength periodically modulated along the coordinate, which gives rise t o an effective nonlocal nonlinear lattice in the condensate. The existence, shape and stability of bright solitons, appearing in this model, are investigated by means of the variational approximation and numerical methods. The mobility of solitons and interactions between them are studied too.
We study the dynamics of an interacting Bose-Hubbard chain coupled to a non-Markovian environment. Our basic tool is the reduced generating functional expressed as a path integral over spin-coherent states. We calculate the leading contribution to th e corresponding effective action, and by minimizing it, we derive mean-field equations that can be numerically solved. With this tool at hand, we examine the influence of the systems initial conditions and interparticle interactions on the dissipative dynamics. Moreover, we investigate the presence of memory effects due to the non-Markovian environment.
139 - H. Susanto , J. Cuevas , P. Kruger 2010
We study the dynamics of matter waves in an effectively one-dimensional Bose-Einstein condensate in a double well potential. We consider in particular the case when one of the double wells confines excited states. Similarly to the known ground state oscillations, the states can tunnel between the wells experiencing the physics known for electrons in a Josephson junction, or be self-trapped. As the existence of dark solitons in a harmonic trap are continuations of such non-ground state excitations, one can view the Josephson-like oscillations as tunnelings of dark solitons. Numerical existence and stability analysis based on the full equation is performed, where it is shown that such tunneling can be stable. Through a numerical path following method, unstable tunneling is also obtained in different parameter regions. A coupled-mode system is derived and compared to the numerical observations. Regions of (in)stability of Josephson tunneling are discussed and highlighted. Finally, we outline an experimental scheme designed to explore such dark soliton dynamics in the laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا