ﻻ يوجد ملخص باللغة العربية
This article provides a focused review of recent findings which demonstrate, in some cases quite counter-intuitively, the existence of bound states with a singularity of the density pattern at the center, while the states are physically meaningful because their total norm converges. One model of this type is based on the 2D Gross-Pitaevskii equation (GPE) which combines the attractive potential ~ 1/r^2 and the quartic self-repulsive nonlinearity, induced by the Lee-Huang-Yang effect (quantum fluctuations around the mean-field state). The GPE demonstrates suppression of the 2D quantum collapse, driven by the attractive potential, and emergence of a stable ground state (GS), whose density features an integrable singularity ~1/r^{4/3} at r --> 0. Modes with embedded angular momentum exist too, and they have their stability regions. A counter-intuitive peculiarity of the model is that the GS exists even if the sign of the potential is reversed from attraction to repulsion, provided that its strength is small enough. This peculiarity finds a relevant explanation. The other model outlined in the review includes 1D, 2D, and 3D GPEs, with the septimal (seventh-order), quintic, and cubic self-repulsive terms, respectively. These equations give rise to stable singular solitons, which represent the GS for each dimension D, with the density singularity ~1/r^{2/(4-D). Such states may be considered as a result of screening of a bare delta-functional attractive potential by the respective nonlinearity.
A recent analysis has revealed singular but physically relevant 2D localized vortex states with density ~ 1/r^{4/3} at r --> 0 and a convergent total norm, which are maintained by the interplay of the potential of the attraction to the center, ~ -1/r
Interior gap superfluidity was introduced together with Frank Wilczek. Later on together with our collaborators, we generalized this new possibility of superfluidity to a more broader concept, breach pair superfluidity. In the occasion to celebrate P
Disorder inevitably exists in realistic samples, manifesting itself in various exotic properties for the topological states. In this paper, we summarize and briefly review work completed over the last few years, including our own, regarding recent de
Typically, energy levels change without bifurcating in response to a change of a control parameter. Bifurcations can lead to loops or swallowtails in the energy spectrum. The simplest quantum Hamiltonian that supports swallowtails is a non-linear $2
We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity,