ﻻ يوجد ملخص باللغة العربية
Uranus and Neptune form a distinct class of planets in our solar system. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions.
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
The origin of Uranus and Neptune remains a challenge for planet formation models. A potential explanation is that the planets formed from a population of a few planetary embryos with masses of a few Earth masses which formed beyond Saturns orbit and
The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a m
Despite many similarities, there are significant observed differences between Uranus and Neptune: while Uranus is tilted and has a regular set of satellites, suggesting their accretion from a disk, Neptunes moons are irregular and are captured object
Determining the depth of atmospheric winds in the outer planets of the Solar System is a key topic in planetary science. We provide constraints on these depths in Uranus and Neptune via the total induced Ohmic dissipation, due to the interaction of t