ﻻ يوجد ملخص باللغة العربية
Despite many similarities, there are significant observed differences between Uranus and Neptune: while Uranus is tilted and has a regular set of satellites, suggesting their accretion from a disk, Neptunes moons are irregular and are captured objects. In addition, Neptune seems to have an internal heat source, while Uranus is in equilibrium with solar insulation. Finally, structure models based on gravity data suggest that Uranus is more centrally condensed than Neptune. We perform a large suite of high resolution SPH simulations to investigate whether these differences can be explained by giant impacts. For Uranus, we find that an oblique impact can tilt its spin axis and eject enough material to create a disk where the regular satellites are formed. Some of the disks are massive and extended enough, and consist of enough rocky material to explain the formation of Uranus regular satellites. For Neptune, we investigate whether a head-on collision could mix the interior, and lead to an adiabatic temperature profile, which may explain its larger flux and higher moment of inertia value. We find that massive and dense projectiles can penetrate towards the centre and deposit mass and energy in the deep interior, leading to a less centrally concentrated interior for Neptune. We conclude that the dichotomy between the ice giants can be explained by violent impacts after their formation.
Uranus and Neptune, and their diverse satellite and ring systems, represent the least explored environments of our Solar System, and yet may provide the archetype for the most common outcome of planetary formation throughout our galaxy. Ice Giants wi
Uranus and Neptune form a distinct class of planets in our solar system. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
We perform a suite of smoothed particle hydrodynamics simulations to investigate in detail the results of a giant impact on the young Uranus. We study the internal structure, rotation rate, and atmospheric retention of the post-impact planet, as well
Determining the depth of atmospheric winds in the outer planets of the Solar System is a key topic in planetary science. We provide constraints on these depths in Uranus and Neptune via the total induced Ohmic dissipation, due to the interaction of t