ترغب بنشر مسار تعليمي؟ اضغط هنا

SUBPLEX: Towards a Better Understanding of Black Box Model Explanations at the Subpopulation Level

154   0   0.0 ( 0 )
 نشر من قبل Gromit Yeuk-Yin Chan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the interpretation of machine learning (ML) models has been of paramount importance when making decisions with societal impacts such as transport control, financial activities, and medical diagnosis. While current model interpretation methodologies focus on using locally linear functions to approximate the models or creating self-explanatory models that give explanations to each input instance, they do not focus on model interpretation at the subpopulation level, which is the understanding of model interpretations across different subset aggregations in a dataset. To address the challenges of providing explanations of an ML model across the whole dataset, we propose SUBPLEX, a visual analytics system to help users understand black-box model explanations with subpopulation visual analysis. SUBPLEX is designed through an iterative design process with machine learning researchers to address three usage scenarios of real-life machine learning tasks: model debugging, feature selection, and bias detection. The system applies novel subpopulation analysis on ML model explanations and interactive visualization to explore the explanations on a dataset with different levels of granularity. Based on the system, we conduct user evaluation to assess how understanding the interpretation at a subpopulation level influences the sense-making process of interpreting ML models from a users perspective. Our results suggest that by providing model explanations for different groups of data, SUBPLEX encourages users to generate more ingenious ideas to enrich the interpretations. It also helps users to acquire a tight integration between programming workflow and visual analytics workflow. Last but not least, we summarize the considerations observed in applying visualization to machine learning interpretations.



قيم البحث

اقرأ أيضاً

Feature based local attribution methods are amongst the most prevalent in explainable artificial intelligence (XAI) literature. Going beyond standard correlation, recently, methods have been proposed that highlight what should be minimally sufficient to justify the classification of an input (viz. pertinent positives). While minimal sufficiency is an attractive property, the resulting explanations are often too sparse for a human to understand and evaluate the local behavior of the model, thus making it difficult to judge its overall quality. To overcome these limitations, we propose a novel method called Path-Sufficient Explanations Method (PSEM) that outputs a sequence of sufficient explanations for a given input of strictly decreasing size (or value) -- from original input to a minimally sufficient explanation -- which can be thought to trace the local boundary of the model in a smooth manner, thus providing better intuition about the local model behavior for the specific input. We validate these claims, both qualitatively and quantitatively, with experiments that show the benefit of PSEM across all three modalities (image, tabular and text). A user study depicts the strength of the method in communicating the local behavior, where (many) users are able to correctly determine the prediction made by a model.
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus networ k and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts.
Machine learning based decision making systems are increasingly affecting humans. An individual can suffer an undesirable outcome under such decision making systems (e.g. denied credit) irrespective of whether the decision is fair or accurate. Indivi dual recourse pertains to the problem of providing an actionable set of changes a person can undertake in order to improve their outcome. We propose a recourse algorithm that models the underlying data distribution or manifold. We then provide a mechanism to generate the smallest set of changes that will improve an individuals outcome. This mechanism can be easily used to provide recourse for any differentiable machine learning based decision making system. Further, the resulting algorithm is shown to be applicable to both supervised classification and causal decision making systems. Our work attempts to fill gaps in existing fairness literature that have primarily focused on discovering and/or algorithmically enforcing fairness constraints on decision making systems. This work also provides an alternative approach to generating counterfactual explanations.
The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a li mitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instances features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box.
Explainable machine learning (ML) has gained traction in recent years due to the increasing adoption of ML-based systems in many sectors. Counterfactual explanations (CFEs) provide ``what if feedback of the form ``if an input datapoint were $x$ inste ad of $x$, then an ML-based systems output would be $y$ instead of $y$. CFEs are attractive due to their actionable feedback, amenability to existing legal frameworks, and fidelity to the underlying ML model. Yet, current CFE approaches are single shot -- that is, they assume $x$ can change to $x$ in a single time period. We propose a novel stochastic-control-based approach that generates sequential CFEs, that is, CFEs that allow $x$ to move stochastically and sequentially across intermediate states to a final state $x$. Our approach is model agnostic and black box. Furthermore, calculation of CFEs is amortized such that once trained, it applies to multiple datapoints without the need for re-optimization. In addition to these primary characteristics, our approach admits optional desiderata such as adherence to the data manifold, respect for causal relations, and sparsity -- identified by past research as desirable properties of CFEs. We evaluate our approach using three real-world datasets and show successful generation of sequential CFEs that respect other counterfactual desiderata.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا