ترغب بنشر مسار تعليمي؟ اضغط هنا

Hall diffusion anomaly and transverse Einstein relation

61   0   0.0 ( 0 )
 نشر من قبل Giovanni Vignale
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is commonly believed that the current response of an electron fluid to a mechanical force (such as an electric field) or to a ``statistical force (e.g., a gradient of chemical potential) are governed by a single linear transport coefficient - the electric conductivity. We argue that this is not the case in anomalous Hall materials. In particular, we find that transverse (Hall) currents manifest two distinct Hall responses governed by an unconventional {it transverse} Einstein relation that captures an anomalous relation between the Hall conductivity and the Hall diffusion constant. We give examples of when the Hall diffusion anomaly is prominent, resulting in situations where the transverse diffusion process overwhelms the Hall conductivity and vice versa.

قيم البحث

اقرأ أيضاً

We study the mechanisms of the spin Hall effect (SHE) and anomalous Hall effect (AHE) in 3$d$ ferromagnetic metals (Fe, Co, permalloy (Ni$_{81}$Fe$_{19}$; Py), and Ni) by varying their resistivities and temperature. At low temperatures where the phon on scattering is negligible, the skew scattering coefficients of the SHE and AHE in Py are related to its spin polarization. However, this simple relation breaks down for Py at higher temperatures as well as for the other ferromagnetic metals at any temperature. We find that, in general, the relation between the SHE and AHE is more complex, with the temperature dependence of the SHE being much stronger than that of AHE.
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and i nteger values when the superconducting phase difference across the junction advances by $2pi$. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reserval symmetry is preserved. We discuss the resulting $8pi$-periodic (or $mathbb{Z}_4$) fractional Josephson effect in the context of recent experiments.
In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of ($2+1$)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals (strictly speaking, in the linearized theory), we find that type-I Dirac semimetals do not possess such an anomaly in anomalous Hall response even at the level of the linearized theory. In particular, we show that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover, we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac semimetal, even in the presence of time reversal symmetry breaking.
We investigate the origin of the breakdown of the Stokes-Einstein relation (SER) between diffusivity and viscosity in undercooled melts. A binary Lennard-Jones system, as a model for a metallic melt, is studied by molecular dynamics. A weak breakdown at high temperatures can be understood from the collectivization of motion, seen in the isotope effect. The strong breakdown at lower temperatures is connected to an increase in dynamic heterogeneity. On relevant timescales some particles diffuse much faster than the average or than predicted by the SER. The van-Hove self correlation function allows to unambiguously identify slow particles. Their diffusivity is even less than predicted by the SER. The time-span of these particles being slow particles, before their first conversion to be a fast one, is larger than the decay time of the stress correlation. The contribution of the slow particles to the viscosity rises rapidly upon cooling. Not only the diffusion but also the viscosity shows a dynamically heterogeneous scenario. We can define a slow viscosity. The SER is recovered as relation between slow diffusivity and slow viscosity.
The response of solids to temperature gradients is often described in terms of a gravitational analogue: the effect of a space-dependent temperature is modeled using a space dependent metric. We investigate the validity of this approach in describing the bulk response of quantum Hall states and other gapped chiral topological states. To this end, we consider the prototypical Haldane model in two different cases of (i) a space-dependent electrostatic potential and gravitational potential and (ii) a space-dependent temperature and chemical potential imprinted by a weak coupling to non-interacting electron baths. We find that the thermal analogue is textit{invalid}; while a space dependent gravitational potential induces transverse energy currents proportional to the third derivative of the gravitational potential, the response to an analogous temperature profile vanishes in limit of weak coupling to the thermal bath. Similarly, the Einstein relation, the analogy between the electrostatic potential and the internal chemical potential, is not valid in such a setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا