ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep neural network for optimal retirement consumption in defined contribution pension system

66   0   0.0 ( 0 )
 نشر من قبل Nicolas Langren\\'e
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop a deep neural network approach to solve a lifetime expected mortality-weighted utility-based model for optimal consumption in the decumulation phase of a defined contribution pension system. We formulate this problem as a multi-period finite-horizon stochastic control problem and train a deep neural network policy representing consumption decisions. The optimal consumption policy is determined by personal information about the retiree such as age, wealth, risk aversion and bequest motive, as well as a series of economic and financial variables including inflation rates and asset returns jointly simulated from a proposed seven-factor economic scenario generator calibrated from market data. We use the Australian pension system as an example, with consideration of the government-funded means-tested Age Pension and other practical aspects such as fund management fees. The key findings from our numerical tests are as follows. First, our deep neural network optimal consumption policy, which adapts to changes in market conditions, outperforms deterministic drawdown rules proposed in the literature. Moreover, the out-of-sample outperformance ratios increase as the number of training iterations increases, eventually reaching outperformance on all testing scenarios after less than 10 minutes of training. Second, a sensitivity analysis is performed to reveal how risk aversion and bequest motives change the consumption over a retirees lifetime under this utility framework. Third, we provide the optimal consumption rate with different starting wealth balances. We observe that optimal consumption rates are not proportional to initial wealth due to the Age Pension payment. Forth, with the same initial wealth balance and utility parameter settings, the optimal consumption level is different between males and females due to gender differences in mortality.



قيم البحث

اقرأ أيضاً

88 - Zuo Quan Xu , Harry Zheng 2020
This paper studies an optimal investment and consumption problem with heterogeneous consumption of basic and luxury goods, together with the choice of time for retirement. The utility for luxury goods is not necessarily a concave function. The optima l heterogeneous consumption strategies for a class of non-homothetic utility maximizer are shown to consume only basic goods when the wealth is small, to consume basic goods and make savings when the wealth is intermediate, and to consume small portion in basic goods and large portion in luxury goods when the wealth is large. The optimal retirement policy is shown to be both universal, in the sense that all individuals should retire at the same level of marginal utility that is determined only by income, labor cost, discount factor as well as market parameters, and not universal, in the sense that all individuals can achieve the same marginal utility with different utility and wealth. It is also shown that individuals prefer to retire as time goes by if the marginal labor cost increases faster than that of income. The main tools used in analysing the problem are from PDE and stochastic control theory including viscosity solution, variational inequality and dual transformation.
In this paper,we study the individuals optimal retirement time and optimal consumption under habitual persistence. Because the individual feels equally satisfied with a lower habitual level and is more reluctant to change the habitual level after ret irement, we assume that both the level and the sensitivity of the habitual consumption decline at the time of retirement. We establish the concise form of the habitual evolutions, and obtain the optimal retirement time and consumption policy based on martingale and duality methods. The optimal consumption experiences a sharp decline at retirement, but the excess consumption raises because of the reduced sensitivity of the habitual level. This result contributes to explain the retirement consumption puzzle. Particularly, the optimal retirement and consumption policies are balanced between the wealth effect and the habitual effect. Larger wealth increases consumption, and larger growth inertia (sensitivity) of the habitual level decreases consumption and brings forward the retirement time.
This paper studies the retirement decision, optimal investment and consumption strategies under habit persistence for an agent with the opportunity to design the retirement time. The optimization problem is formulated as an interconnected optimal sto pping and stochastic control problem (Stopping-Control Problem) in a finite time horizon. The problem contains three state variables: wealth $x$, habit level $h$ and wage rate $w$. We aim to derive the retirement boundary of this wealth-habit-wage triplet $(x,h,w)$. The complicated dual relation is proposed and proved to convert the original problem to the dual one. We obtain the retirement boundary of the dual variables based on an obstacle-type free boundary problem. Using dual relation we find the retirement boundary of primal variables and feed-back forms of optimal strategies. We show that if the so-called de facto wealth exceeds a critical proportion of wage, it will be optimal for the agent to choose to retire immediately. In numerical applications, we show how de facto wealth determines the retirement decisions and optimal strategies. Moreover, we observe discontinuity at retirement boundary: investment proportion always jumps down upon retirement, while consumption may jump up or jump down, depending on the change of marginal utility. We also find that the agent with higher standard of life tends to work longer.
Pension reform is a crucial societal problem in many countries, and traditional pension schemes, such as Pay-As-You-Go and Defined-Benefit schemes, are being replaced by more sustainable ones. One challenge for a public pension system is the manageme nt of a systematic risk that affects all individuals in one generation (e.g., that caused by a worse economic situation). Such a risk cannot be diversified within one generation, but may be reduced by sharing with other (younger and/or older) generations, i.e., by intergenerational risk sharing (IRS). In this work, we investigate IRS in a Collective Defined-Contribution (CDC) pension system. We consider a CDC pension model with overlapping multiple generations, in which a funding-ratio-liked declaration rate is used as a means of IRS. We perform an extensive simulation study to investigate the mechanism of IRS. One of our main findings is that the IRS works particularly effectively for protecting pension participants in the worst scenarios of a tough financial market. Apart from these economic contributions, we make a simulation-methodological contribution for pension studies by employing Bayesian optimization, a modern machine learning approach to black-box optimization, in systematically searching for optimal parameters in our pension model.
This paper investigates the robust {non-zero-sum} games in an aggregated {overfunded} defined benefit (abbr. DB) pension plan. The sponsoring firm is concerned with the investment performance of the fund surplus while the participants act as a union to claim a share of the fund surplus. The financial market consists of one risk-free asset and $n$ risky assets. The firm and the union both are ambiguous about the financial market and care about the robust strategies under the worst case scenario. {The unions objective is to maximize the expected discounted utility of the additional benefits, the firms two different objectives are to maximizing the expected discounted utility of the fund surplus and the probability of the fund surplus reaching an upper level before hitting a lower level in the worst case scenario.} We formulate the related two robust non-zero-sum games for the firm and the union. Explicit forms and optimality of the solutions are shown by stochastic dynamic programming method. In the end of this paper, numerical results are illustrated to depict the economic behaviours of the robust equilibrium strategies in these two different games.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا