ﻻ يوجد ملخص باللغة العربية
The approximation of both geodesic distances and shortest paths on point cloud sampled from an embedded submanifold $mathcal{M}$ of Euclidean space has been a long-standing challenge in computational geometry. Given a sampling resolution parameter $ h $, state-of-the-art discrete methods yield $ O(h) $ provable approximations. In this paper, we investigate the convergence of such approximations made by Manifold Moving Least-Squares (Manifold-MLS), a method that constructs an approximating manifold $mathcal{M}^h$ using information from a given point cloud that was developed by Sober & Levin in 2019. In this paper, we show that provided that $mathcal{M}in C^{k}$ and closed (i.e. $mathcal{M}$ is a compact manifold without boundary) the Riemannian metric of $ mathcal{M}^h $ approximates the Riemannian metric of $ mathcal{M}, $. Explicitly, given points $ p_1, p_2 in mathcal{M}$ with geodesic distance $ rho_{mathcal{M}}(p_1, p_2) $, we show that their corresponding points $ p_1^h, p_2^h in mathcal{M}^h$ have a geodesic distance of $ rho_{mathcal{M}^h}(p_1^h,p_2^h) = rho_{mathcal{M}}(p_1, p_2)(1 + O(h^{k-1})) $ (i.e., the Manifold-MLS is nearly an isometry). We then use this result, as well as the fact that $ mathcal{M}^h $ can be sampled with any desired resolution, to devise a naive algorithm that yields approximate geodesic distances with a rate of convergence $ O(h^{k-1}) $. We show the potential and the robustness to noise of the proposed method on some numerical simulations.
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as m
Surface reconstruction from noisy, non-uniformly, and unoriented point clouds is a fascinating yet difficult problem in computer vision and computer graphics. In this paper, we propose Neural-IMLS, a novel approach that learning noise-resistant signe
We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regardin
In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using
In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge-Kantorovich equations, a PDE formulation of the optimal transport proble