ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Immunization for Certifiable Robustness on Graphs

60   0   0.0 ( 0 )
 نشر من قبل Shuchang Tao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite achieving strong performance in semi-supervised node classification task, graph neural networks (GNNs) are vulnerable to adversarial attacks, similar to other deep learning models. Existing researches focus on developing either robust GNN models or attack detection methods against adversarial attacks on graphs. However, little research attention is paid to the potential and practice of immunization to adversarial attacks on graphs. In this paper, we propose and formulate the graph adversarial immunization problem, i.e., vaccinating an affordable fraction of node pairs, connected or unconnected, to improve the certifiable robustness of graph against any admissible adversarial attack. We further propose an effective algorithm, called AdvImmune, which optimizes with meta-gradient in a discrete way to circumvent the computationally expensive combinatorial optimization when solving the adversarial immunization problem. Experiments are conducted on two citation networks and one social network. Experimental results demonstrate that the proposed AdvImmune method remarkably improves the ratio of robust nodes by 12%, 42%, 65%, with an affordable immune budget of only 5% edges.



قيم البحث

اقرأ أيضاً

We consider adversarial training of deep neural networks through the lens of Bayesian learning, and present a principled framework for adversarial training of Bayesian Neural Networks (BNNs) with certifiable guarantees. We rely on techniques from con straint relaxation of non-convex optimisation problems and modify the standard cross-entropy error model to enforce posterior robustness to worst-case perturbations in $epsilon$-balls around input points. We illustrate how the resulting framework can be combined with methods commonly employed for approximate inference of BNNs. In an empirical investigation, we demonstrate that the presented approach enables training of certifiably robust models on MNIST, FashionMNIST and CIFAR-10 and can also be beneficial for uncertainty calibration. Our method is the first to directly train certifiable BNNs, thus facilitating their deployment in safety-critical applications.
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift clos er to the false class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work. The code of our work is available at https://github.com/columbia/Metric_Learning_Adversarial_Robustness.
This paper investigates the theory of robustness against adversarial attacks. It focuses on the family of randomization techniques that consist in injecting noise in the network at inference time. These techniques have proven effective in many contex ts, but lack theoretical arguments. We close this gap by presenting a theoretical analysis of these approaches, hence explaining why they perform well in practice. More precisely, we make two new contributions. The first one relates the randomization rate to robustness to adversarial attacks. This result applies for the general family of exponential distributions, and thus extends and unifies the previous approaches. The second contribution consists in devising a new upper bound on the adversarial generalization gap of randomized neural networks. We support our theoretical claims with a set of experiments.
advertorch is a toolbox for adversarial robustness research. It contains various implementations for attacks, defenses and robust training methods. advertorch is built on PyTorch (Paszke et al., 2017), and leverages the advantages of the dynamic comp utational graph to provide concise and efficient reference implementations. The code is licensed under the LGPL license and is open sourced at https://github.com/BorealisAI/advertorch .
257 - Hanjun Dai , Hui Li , Tian Tian 2018
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool the model by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. Also, variants of genetic algorithms and gradient methods are presented in the scenario where prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا