ﻻ يوجد ملخص باللغة العربية
Scattering of seismic waves can reveal subsurface structures but usually in a piecemeal way focused on specific target areas. We used a manifold learning algorithm called the Sequencer to simultaneously analyze thousands of seismograms of waves diffracting along the core-mantle boundary and obtain a panoptic view of scattering across the Pacific region. In nearly half of the diffracting waveforms, we detected seismic waves scattered by three-dimensional structures near the core-mantle boundary. The prevalence of these scattered arrivals shows that the region hosts pervasive lateral heterogeneity. Our analysis revealed loud signals due to a plume root beneath Hawaii and a previously unrecognized ultralow-velocity zone beneath the Marquesas Islands. These observations illustrate how approaches flexible enough to detect robust patterns with little to no user supervision can reveal distinctive insights into the deep Earth.
We investigate the possibility to extract information contained in seismic waveforms propagating in fluid-filled porous media by developing and using a full waveform inversion procedure valid for layered structures. To reach this objective, we first
Earth/s lowermost mantle displays complex geological structures that likely result from heterogeneous thermal and electromagnetic interaction with the core. Geophysical models of the core-mantle boundary (CMB) region rely on the thermal and electrica
The heat flux across the core-mantle boundary (QCMB) is the key parameter to understand the Earth/s thermal history and evolution. Mineralogical constraints of the QCMB require deciphering contributions of the lattice and radiative components to the
To explore the role of the olivine grain size and crystal preferred orientation (CPO) on the evolution of the microstructure and the mechanical behaviour of upper mantle rocks up to large strains, we performed axial extension experiments at 1200C, 30
We investigate the pressure torque between the fluid core and the solid mantle arising from magnetohydrodynamic modes in a rapidly rotating planetary core. A two-dimensional reduced model of the core fluid dynamics is developed to account for the non