ترغب بنشر مسار تعليمي؟ اضغط هنا

High Yield Growth and Doping of Black Phosphorus with Tunable Electronic Properties

116   0   0.0 ( 0 )
 نشر من قبل Bilu Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black phosphorus (BP) has recently attracted significant interest due to its unique electronic and optical properties. Doping is an effective strategy to tune a materials electronic structures, however, the direct and controllable growth of BP with a high yield and its doping remain a great challenge. Here we report an efficient short-distance transport (SDT) growth approach and achieve the controlled growth of high quality BP with the highest yield so far, where 98% of the red phosphorus is converted to BP. The doping of BP by As, Sb, Bi, Se and Te are also achieved by this SDT growth approach. Spectroscopic results show that doping systematically changes its electronic structures including band gap, work function, and energy band position. As a result, we have found that the air-stability of doped BP samples (Sb and Te-doped BP) improves compared with pristine BP, due to the downshift of the conduction band minimum with doping. This work develops a new method to grow BP and doped BP with tunable electronic structures and improved stability, and should extend the uses of these class of materials in various areas.



قيم البحث

اقرأ أيضاً

In this letter, a new approach to chemically dope black phosphorus (BP) is presented, which significantly enhances the device performance of BP field-effect transistors for an initial period of 18 h, before degrading to previously reported levels. By applying 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), low ON-state resistance of 3.2 ohm.mm and high field-effect mobility of 229 cm2/Vs are achieved with a record high drain current of 532 mA/mm at a moderate channel length of 1.5 {mu}m.
Studies of polynitrogen phases are of great interest for fundamental science and for the design of novel high energy density materials. Laser heating of pure nitrogen at 140 GPa in a diamond anvil cell led to the synthesis of a polymeric nitrogen all otrope with the black phosphorus structure, bp-N. The structure was identified in situ using synchrotron single-crystal X-ray diffraction and further studied by Raman spectroscopy and density functional theory calculations. The discovery of bp-N brings nitrogen in line with heavier pnictogen elements, resolves incongruities regarding polymeric nitrogen phases and provides insights into polynitrogen arrangements at extreme densities.
We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers , and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced.
239 - C. Q. Han , M. Y. Yao , X. X. Bai 2014
Electronic structures of single crystalline black phosphorus were studied by state-of-art angleresolved photoemission spectroscopy. Through high resolution photon energy dependence measurements, the band dispersions along out-of-plane and in-plane di rections are experimentally determined. The electrons were found to be more localized in the ab-plane than that is predicted in calculations. Beside the kz-dispersive bulk bands, resonant surface state is also observed in the momentum space. Our finds strongly suggest that more details need to be considered to fully understand the electronic properties of black phosphorus theoretically.
Tuning of the electronic properties of pre-synthesized colloidal semiconductor nanocrystals (NCs) by doping plays a key role in the prospect of implementing them in printed electronics devices such as transistors, and photodetectors. While such impur ity doping reactions have already been introduced, the understanding of the doping process, the nature of interaction between the impurity and host atoms, and the conditions affecting the solubility limit of impurities in nanocrystals are still unclear. Here, we used a post-synthesis diffusion based doping reaction to introduce Ag impurities into InAs NCs. Optical absorption spectroscopy along with analytical inductively coupled plasma mass-spectroscopy (ICP-MS) were used to present a two stage doping model consisting of a doping region and a growth region, depending on the concentration of the impurities in the reaction vessel. X-ray absorption fine-structure (XAFS) spectroscopy was employed to determine the impurity location and correlate between the structural and electronic properties for different sizes of InAs NCs and dopant concentrations. The resulting structural model describes a heterogeneous system where the impurities initially dope the NC, by substituting for In atoms near the surface of the NC, until the solubility limit is reached, after which the rapid growth and formation of metallic structures are identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا