ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamics of 3-minute wavefronts and their relation to sunspot magnetic fields

191   0   0.0 ( 0 )
 نشر من قبل Robert Sych
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of wave processes occurring in solar active region NOAA 11131 on 2010 December 10, captured by the Solar Dynamics Observatory in the 1600A, 304A, and 171A channels. For spectral analysis we employed pixelised wavelet filtering together with a developed digital technique based on empirical mode decomposition. We studied the 3-minute wave dynamics to obtain relationships with the magnetic structuring of the underlying sunspot. We found that during development of wave trains the motion path occurred along a preferential direction, and that the broadband wavefronts can be represented as a set of separate narrowband oscillation sources. These sources become visible as the waves pass through the umbral inhomogeneities caused by the differing magnetic field inclination angles. We found the spatial and frequency fragmentation of wavefronts, and deduced that the combination of narrowband spherical and linear parts of the wavefronts provide the observed spirality. Maps of the magnetic field inclination angles confirm this assumption. We detect the activation of umbral structures as the increasing of oscillations in the sources along the front ridge. Their temporal dynamics are associated with the occurrence of umbral flashes. Spatial localisation of the sources is stable over time and depends on the oscillation period. We propose that these sources are the result of wave paths along the loops extending outwards from the magnetic bundles of the umbra.



قيم البحث

اقرأ أيضاً

We present polarisation properties at $1.4,$GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {it Wide-Field Infrared Survey Explorer} data to determine the host g alaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and $1.4,$GHz luminosity of $6times10^{21}<L_{rm 1.4}<7times10^{25},$W Hz$^{-1}$, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a $1.4,$GHz luminosity of $9times10^{23}<L_{rm 1.4}<7times10^{28},$W Hz$^{-1}$, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at $1.4,$GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m$^{-2}$ wide.
Recently, there have been some reports of unusually strong photospheric magnetic fields (which can reach values of over 7 kG) inferred from Hinode SOT/SP sunspot observations within penumbral regions. These superstrong penumbral fields are even large r than the strongest umbral fields on record and appear to be associated with supersonic downflows. The finding of such fields has been controversial since they seem to show up only when spatially coupled
Using observations of sunspot magnetic field strengths (H) from the Crimean Astrophysical Observatory (CrAO) and area (S) of sunspots from the Kislovodsk Mountain Astronomical Station of Pulkovo Observatory, we investigate the changes in the relation between H and S over the period of about two solar cycles (1994-2013). The data were fitted by H = A + B log S, where A = (778+/-46) and B = (778+/-25). We show that the correlation between H and S varies with the phase of solar cycle, and $A$ coefficient decreases significantly after year 2001, while B coefficient does not change significantly. Furthermore, our data confirm the presence of two distinct populations in distribution of sunspots (small sunspots with weaker field strength and large sunspots with stronger field). We show that relative contribution of each component to the distribution of sunspots by their area changes with the phase of solar cycle and on longer-then-cycle periods. We interpret these changes as a signature of a long-term (centennial) variations in properties of sunspots.
Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma dens ity and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult since the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G. A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.
Motivated by dark coronal lanes in SOHO / EIT 284 {AA} EUV observations we construct and optimize an atmosphere model of the AR 8535 sunspot by adding a cool and dense component in the volume of plasma along open field lines determined using the Pote ntial Field Source Surface (PFSS) extrapolation. Our model qualitatively reproduces the observed reduced microwave brightness temperature in the northern part of the sunspot in the VLA observations from 13 May 1999 and provides a physical explanation for the coronal dark lanes. We propose application of this method to other sunspots with such observed dark regions in EUV or soft X-rays and with concurrent microwave observations to determine the significance of open field regions. The connection between open fields and the resulting plasma temperature and density change is of relevance for slow solar wind source investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا