ﻻ يوجد ملخص باللغة العربية
The basic thermodynamic quantities for a non-interacting scalar field in a periodic potential composed of either a one-dimensional chain of Dirac $delta$-$delta^prime$ functions or a specific potential with extended compact support are calculated. First, we consider the representation in terms of real frequencies (or one-particle energies). Then we turn the axis of frequency integration towards the imaginary axis by a finite angle, which allows for easy numerical evaluation, and finally turn completely to the imaginary frequencies and derive the corresponding Matsubara representation, which this way appears also for systems with band structure. In the limit case $T to 0$ we confirm earlier results on the vacuum energy. We calculate for the mentioned examples the free energy and the entropy and generalize earlier results on negative entropy.
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t-W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving t
Building upon work by Matsumoto, we show that the quantum relative entropy with full-rank second argument is determined by four simple axioms: i) Continuity in the first argument, ii) the validity of the data-processing inequality, iii) additivity un
We revisit the periodic Schur process introduced by Borodin in 2007. Our contribution is threefold. First, we provide a new simpler derivation of its correlation functions via the free fermion formalism. In particular, we shall see that the process b
This work concerns the dynamical two-point spin correlation functions of the transverse Ising quantum chain at finite (non-zero) temperature, in the universal region near the quantum critical point. They are correlation functions of twist fields in t
The thermodynamics of a scalar field with a quartic interaction is studied within the linear delta expansion (LDE) method. Using the imaginary-time formalism the free energy is evaluated up to second order in the LDE. The method generates nonperturba