ﻻ يوجد ملخص باللغة العربية
We study the (Ahlfors regular) conformal dimension of the boundary at infinity of Gromov hyperbolic groups which split over elementary subgroups. If such a group is not virtually free, we show that the conformal dimension is equal to the maximal value of the conformal dimension of the vertex groups, or 1, whichever is greater, and we characterise when the conformal dimension is attained. As a consequence, we are able to characterise which Gromov hyperbolic groups (without $2$-torsion) have conformal dimension 1, answering a question of Bonk and Kleiner.
Given an abelian group $G$, it is natural to ask whether there exists a permutation $pi$ of $G$ that destroys all nontrivial 3-term arithmetic progressions (APs), in the sense that $pi(b) - pi(a) eq pi(c) - pi(b)$ for every ordered triple $(a,b,c) i
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the aut
A dimension reduction for the hyperbolic space is established. When points are far apart an embedding with bounded distortion into the hyperbolic plane is achieved.
Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
Let G be a finitely generated relatively hyperbolic group. We show that if no peripheral subgroup of G is hyperbolic relative to a collection of proper subgroups, then the fixed subgroup of every automorphism of G is relatively quasiconvex. It follow