ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear dynamics and millikelvin cavity-cooling of levitated nanoparticles

170   0   0.0 ( 0 )
 نشر من قبل Peter Barker
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising of a nanosphere levitated and cooled in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere to millikelvin temperatures for indefinite periods of time in high vacuum. We observe cooling of the linear and non-linear motion, leading to a $10^5$ fold reduction in phonon number $n_p$, attaining final occupancies of $n_p = 100-1000$. This work puts cavity cooling of a levitated object to the quantum ground-state firmly within reach.

قيم البحث

اقرأ أيضاً

We report three-dimensional cooling of a levitated nanoparticle inside an optical cavity. The cooling mechanism is provided by cavity-enhanced coherent scattering off an optical tweezer. The observed 3D dynamics and cooling rates are as theoretically expected from the presence of both linear and quadratic terms in the interaction between the particle motion and the cavity field. By achieving nanometer-level control over the particle location we optimize the position-dependent coupling and demonstrate axial cooling by two orders of magnitude at background pressures as high as $6times10^{-2}$ mbar. We also estimate a significant ($> 40$ dB) suppression of laser phase noise, and hence of residual heating, which is a specific feature of the coherent scattering scheme. The observed performance implies that quantum ground state cavity cooling of levitated nanoparticles can be achieved for background pressures below $10^{-7}$ mbar.
We implement a cavity opto-electromechanical system integrating electrical actuation capabilities of nanoelectromechanical devices with ultrasensitive mechanical transduction achieved via intra-cavity optomechanical coupling. Electrical gradient forc es as large as 0.40 microN are realized, with simultaneous mechanical transduction sensitivity of 1.5 X 10^-18 m/rtHz representing a three orders of magnitude improvement over any nanoelectromechanical system to date. Opto-electromechanical feedback cooling is demonstrated, exhibiting strong squashing of the in-loop transduction signal. Out-of-loop transduction provides accurate temperature calibration even in the critical paradigm where measurement backaction induces opto-mechanical correlations.
131 - Jian Liu , Ka-Di Zhu 2017
Particles with electric charge 10^(-12)e in bulk mass are not excluded by present experiments. In the present letter we provide a feasible scheme to measure the millicharged particles via the optical cavity coupled to a levitated microsphere. The res ults show that the optical probe spectrum of the micro-oscillator presents a distinct shift due to the existence of millicharged particles. Owing to the very narrow linewidth(10^(-7) Hz) of the optical Kerr effect, this shift will be more obvious, which makes the millicharges more easy to be detectable. We propose a method to eliminate the polarization force background via the homogeneously charged ring, which makes the scheme displays strong advantages in precision than the current experiments. The technique proposed here paves the way for new applications for probing dark matter and nonzero charged neutrino in the condensed matter.
We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechani cal response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor 350 We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.
We report on cooling the center-of-mass motion of a nanoparticle due to a purely quadratic coupling between its motion and the optical field of a high finesse cavity. The resulting interaction gives rise to a Van der Pol nonlinear damping, which is a nalogous to conventional parametric feedback where the cavity provides passive feedback without measurement. We show experimentally that like feedback cooling the resulting energy distribution is strongly nonthermal and can be controlled by the nonlinear damping of the cavity. As quadratic coupling has a prominent role in proposed protocols to generate deeply nonclassical states, our work represents a first step for producing such states in a levitated system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا