ترغب بنشر مسار تعليمي؟ اضغط هنا

The efficiency of nuclear burning during thermonuclear (Type I) bursts as a function of accretion rate

81   0   0.0 ( 0 )
 نشر من قبل Yuri Cavecchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the thermonuclear burning efficiency as a function of accretion rate for the Type I X-ray bursts of five low-mass X-ray binary systems. We chose sources with measured neutron star spins and a substantial population of bursts from a large observational sample. The general trend for the burst rate is qualitatively the same for all sources; the burst rate first increases with the accretion rate up to a maximum, above which the burst rate declines, despite the increasing accretion rate. At higher accretion rates, when the burst rate decreases, the {alpha}-value (the ratio of accretion energy and burst energy) increases by up to a factor of 10 above that in the rising burst rate regime. These observations are contrary to the predictions of 1D numerical models, but can be explained as the consequence of a zone of stable burning on the neutron star surface, which expands with increasing accretion rate. The stable burning also pollutes the unstable burning layer with ashes, contributing to the change in burst properties measured in the falling burst rate regime. We find that the mass accretion rate at which the burst rate begins to decrease is anti-correlated with the spin of the neutron star. We conclude that the neutron star spin is a key factor, moderating the nuclear burning stability, via the local accretion rate and fuel composition over the star.



قيم البحث

اقرأ أيضاً

54 - D. K. Galloway 2003
We analyze 24 type I X-ray bursts from GS 1826-24 observed by the Rossi X-ray Timing Explorer between 1997 November and 2002 July. The bursts observed between 1997-98 were consistent with a stable recurrence time of 5.74 +/- 0.13 hr. The persistent i ntensity of GS 1826-24 increased by 36% between 1997-2000, by which time the burst interval had decreased to 4.10 +/- 0.08 hr. In 2002 July the recurrence time was shorter again, at 3.56 +/- 0.03 hr. The bursts within each epoch had remarkably identical lightcurves over the full approx. 150 s burst duration; both the initial decay timescale from the peak, and the burst fluence, increased slightly with the rise in persistent flux. The decrease in the burst recurrence time was proportional to Mdot^(-1.05+/-0.02) (where Mdot is assumed to be linearly proportional to the X-ray flux), so that the ratio alpha between the integrated persistent and burst fluxes was inversely correlated with Mdot. The average value of alpha was 41.7 +/- 1.6. Both the alpha value, and the long burst durations indicate that the hydrogen is burning during the burst via the rapid-proton (rp) process. The variation in alpha with Mdot implies that hydrogen is burning stably between bursts, requiring solar metallicity (Z ~ 0.02) in the accreted layer. We show that solar metallicity ignition models naturally reproduce the observed burst energies, but do not match the observed variations in recurrence time and burst fluence. Low metallicity models (Z ~ 0.001) reproduce the observed trends in recurrence time and fluence, but are ruled out by the variation in alpha. We discuss possible explanations, including extra heating between bursts, or that the fraction of the neutron star covered by the accreted fuel increases with Mdot.
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and black holes. Neutron stars are of particular observational interest, as they exhibit surface effects giving rise to phenomena (thermonuclear bursts and pulsations) not seen in black holes. Here we briefly review the present understanding of thermonuclear (type-I) X-ray bursts. These events are powered by an extensive chain of nuclear reactions, which are in many cases unique to these environments. Thermonuclear bursts have been exploited over the last few years as an avenue to measure the neutron star mass and radius, although the contribution of systematic errors to these measurements remains contentious. We describe recent efforts to better match burst models to observations, with a view to resolving some of the astrophysical uncertainties related to these events. These efforts have good prospects for providing complementary information to nuclear experiments.
Black hole binary transients undergo dramatic evolution in their X-ray timing and spectral behaviour during outbursts. In recent years a paradigm has arisen in which soft X-ray states are associated with an inner disc radius at, or very close to, the innermost stable circular orbit (ISCO) around the black hole, while in hard X-ray states the inner edge of the disc is further from the black hole. Models of advective flows suggest that as the X-ray luminosity drops in hard states, the inner disc progressively recedes, from a few to hundreds gravitational radii. Recent observations which show broad iron line detections and estimates of the disc component strength suggest that a non-recessed disc could still be present in bright hard states. In this study we present a comprehensive analysis of the spectral components associated with the inner disc, utilising data from instruments with sensitive low-energy responses and including reanalyses of previously published results. A key component of the study is to fully estimate systematic uncertainties by e.g. investigating in detail the effect of having a hydrogen column density that is fixed or free to vary. We conclude that for L_x > 0.01 of the Eddington limit, spectral fits allow us to constrain the disc to be < 10R_g. There is, however, clear evidence that when L_x is between 10^-2-- 10^-3 Eddington, the disc does begin to recede. We include measurements of disc radii in two quiescent black hole binaries, and present the inferred evolution of accretion parameters in the entire range of bolometric luminosities 10^-8 -- 1 Eddington. We compare our results with theoretical models and note that the implied rate of disc recession with luminosity is consistent with recent empirical results on the X-ray timing behaviour of black holes of all masses.
151 - J.J. He , A. Parikh , B.A. Brown 2014
The thermonuclear rate of the $^{42}$Ti($p$,$gamma$)$^{43}$V reaction has been reevaluated based on a recent precise proton separation energy measurement of $S_p$($^{43}$V)=83$pm$43 keV. The astrophysical impact of our new rates has been investigated through one-zone postprocessing type I x-ray burst calculations. It shows that the new experimental value of $S_p$ significantly affects the yields of species between A$approx$40--45. As well, the precision of the recent experimental $S_p$ value constrains these yields to better than a factor of three.
198 - M. Linares 2011
We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet opposite to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor ~3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا