ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermonuclear 42Ti(p,gamma)43V rate in type I X-ray bursts

141   0   0.0 ( 0 )
 نشر من قبل Jianjun He Dr
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermonuclear rate of the $^{42}$Ti($p$,$gamma$)$^{43}$V reaction has been reevaluated based on a recent precise proton separation energy measurement of $S_p$($^{43}$V)=83$pm$43 keV. The astrophysical impact of our new rates has been investigated through one-zone postprocessing type I x-ray burst calculations. It shows that the new experimental value of $S_p$ significantly affects the yields of species between A$approx$40--45. As well, the precision of the recent experimental $S_p$ value constrains these yields to better than a factor of three.



قيم البحث

اقرأ أيضاً

Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and black holes. Neutron stars are of particular observational interest, as they exhibit surface effects giving rise to phenomena (thermonuclear bursts and pulsations) not seen in black holes. Here we briefly review the present understanding of thermonuclear (type-I) X-ray bursts. These events are powered by an extensive chain of nuclear reactions, which are in many cases unique to these environments. Thermonuclear bursts have been exploited over the last few years as an avenue to measure the neutron star mass and radius, although the contribution of systematic errors to these measurements remains contentious. We describe recent efforts to better match burst models to observations, with a view to resolving some of the astrophysical uncertainties related to these events. These efforts have good prospects for providing complementary information to nuclear experiments.
Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by using all available experimental information on 24Al excitation energies. Proton and gamma-ray partial widths for astrophysically important resonances are derived from shell m odel calculations. Correspondences of experimentally observed 24Al levels with shell model states are based on application of the isobaric multiplet mass equation. Our new rates suggest that the 23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20 region during thermonuclear runaways on massive white dwarfs.
Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experi mental progress over the preceding decade. We describe the current understanding of the conditions that lead to burst ignition, and the influence of the burst fuel on the observational characteristics. We provide an overview of the processes which shape the burst X-ray spectrum, including the observationally elusive discrete spectral features. We report on the studies of timing behaviour related to nuclear burning, including burst oscillations and mHz quasi-periodic oscillations. We describe the increasing role of nuclear experimental physics in the interpretation of astrophysical data and models. We survey the simulation projects that have taken place to date, and chart the increasing dialogue between modellers, observers, and nuclear experimentalists. Finally, we identify some open problems with prospects of a resolution within the timescale of the next such review.
266 - J. Hu , J.J. He , A. Parikh 2014
The $^{14}$O($alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts (XRBs). The resonant properties in the compound nucleus $^{18}$Ne have been investigated t hrough resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ${Delta}$E-E silicon telescopes at laboratory angles of $theta$$_{lab}$$approx$3$^circ$, 10$^circ$ and 18$^circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an $R$-matrix analysis. In particular, $J^{pi}$=1$^-$ was firmly assigned to the 6.15-MeV state which dominates the thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate below 2 GK. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$pm$0.11 MeV with tentative $J$=0 assignment. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.
MAXI J1807+132 is a low-mass X-ray binary (LMXB) first detected in outburst in 2017. Observations during the 2017 outburst did not allow for an unambiguous identification of the nature of the compact object. MAXI J1807+132 was detected in outburst ag ain in 2019 and was monitored regularly with NICER. In this paper we report on five days of observations during which we detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB. Time-resolved spectroscopy of the three Type-I bursts revealed typical characteristics expected for these phenomena. All three Type-I bursts show slow rises and long decays, indicative of mixed H/He fuel. We find no strong evidence that any of the Type-I bursts reached the Eddington Luminosity; however, under the assumption that the brightest X-ray burst underwent photospheric radius expansion, we estimate a <12.4kpc upper limit for the distance. We searched for burst oscillations during the Type-I bursts from MAXI J1807+132 and found none (<10% amplitude upper limit at 95% confidence level). Finally, we found that the brightest Type-I burst shows a ~1.6sec pause during the rise. This pause is similar to one recently found with NICER in a bright Type-I burst from the accreting millisecond X-ray pulsar SAX J1808.4-3658. The fact that Type-I bursts from both sources can show this type of pause suggests that the origin of the pauses is independent of the composition of the burning fuel, the peak luminosity of the Type-I bursts, or whether the NS is an X-ray pulsar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا