ﻻ يوجد ملخص باللغة العربية
The study carries out predictive modeling based on publicly available COVID-19 data for the duration 01 April to 20 June 2020 pertaining to India and five of its most infected states: Maharashtra, Tamil Nadu, Delhi, Gujarat, and Rajasthan using susceptible, infected, recovered, and dead (SIRD) model. The basic reproduction number R0 is derived by exponential growth method using RStudio package R0. The differential equations reflecting SIRD model have been solved using Python 3.7.4 on Jupyter Notebook platform. For visualization, Python Matplotlib 3.2.1 package is used. The study offers insights on peak-date, peak number of COVID-19 infections, and end-date pertaining to India and five of its states. The results could be leveraged by political leadership, health authorities, and industry doyens for policy planning and execution.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i
In the absence of neither an effective treatment or vaccine and with an incomplete understanding of the epidemiological cycle, Govt. has implemented a nationwide lockdown to reduce COVID-19 transmission in India. To study the effect of social distanc
We present a compartmental meta-population model for the spread of Covid-19 in India. Our model simulates populations at a district or state level using an epidemiological model that is appropriate to Covid-19. Different districts are connected by a
The reproductive number R_0 (and its value after initial disease emergence R) has long been used to predict the likelihood of pathogen invasion, to gauge the potential severity of an epidemic, and to set policy around interventions. However, often ig
In order to analyze the effectiveness of three successive nationwide lockdown enforced in India, we present a data-driven analysis of four key parameters, reducing the transmission rate, restraining the growth rate, flattening the epidemic curve and