ترغب بنشر مسار تعليمي؟ اضغط هنا

Backward Simulation of Multivariate Mixed Poisson Processes

313   0   0.0 ( 0 )
 نشر من قبل Michael Chiu
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The Backward Simulation (BS) approach was developed to generate, simply and efficiently, sample paths of correlated multivariate Poisson process with negative correlation coefficients between their components. In this paper, we extend the BS approach to model multivariate Mixed Poisson processes which have many important applications in Insurance, Finance, Geophysics and many other areas of Applied Probability. We also extend the Forward Continuation approach, introduced in our earlier work, to multivariate Mixed Poisson processes.

قيم البحث

اقرأ أيضاً

Multivariate GARCH models are important tools to describe the dynamics of multivariate times series of financial returns. Nevertheless, these models have been much less used in practice due to the lack of reliable software. This paper describes the { tt R} package {bf BayesDccGarch} which was developed to implement recently proposed inference procedures to estimate and compare multivariate GARCH models allowing for asymmetric and heavy tailed distributions.
83 - Sewon Park , Jaeyong Lee 2021
We develop a fully Bayesian nonparametric regression model based on a Levy process prior named MLABS (Multivariate Levy Adaptive B-Spline regression) model, a multivariate version of the LARK (Levy Adaptive Regression Kernels) models, for estimating unknown functions with either varying degrees of smoothness or high interaction orders. Levy process priors have advantages of encouraging sparsity in the expansions and providing automatic selection over the number of basis functions. The unknown regression function is expressed as a weighted sum of tensor product of B-spline basis functions as the elements of an overcomplete system, which can deal with multi-dimensional data. The B-spline basis can express systematically functions with varying degrees of smoothness. By changing a set of degrees of the tensor product basis function, MLABS can adapt the smoothness of target functions due to the nice properties of B-spline bases. The local support of the B-spline basis enables the MLABS to make more delicate predictions than other existing methods in the two-dimensional surface data. Experiments on various simulated and real-world datasets illustrate that the MLABS model has comparable performance on regression and classification problems. We also show that the MLABS model has more stable and accurate predictive abilities than state-of-the-art nonparametric regression models in relatively low-dimensional data.
We introduce hyppo, a unified library for performing multivariate hypothesis testing, including independence, two-sample, and k-sample testing. While many multivariate independence tests have R packages available, the interfaces are inconsistent and most are not available in Python. hyppo includes many state of the art multivariate testing procedures. The package is easy-to-use and is flexible enough to enable future extensions. The documentation and all releases are available at https://hyppo.neurodata.io.
The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function pe rforms a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, MfUSampler provides a reliable library for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as utilization of conjugacy, conditional independence, and porting function evaluations to compiled languages.
68 - Ricardo S Ehlers 2019
We propose a flexible model for count time series which has potential uses for both underdispersed and overdispersed data. The model is based on the Conway-Maxwell-Poisson (COM-Poisson) distribution with parameters varying along time to take serial c orrelation into account. Model estimation is challenging however and require the application of recently proposed methods to deal with the intractable normalising constant as well as efficiently sampling values from the COM-Poisson distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا