ترغب بنشر مسار تعليمي؟ اضغط هنا

The Monte Carlo Program KKMC for the Lepton or Quark Pair Production at LEP/SLC Energies -- updates of electroweak calculations

49   0   0.0 ( 0 )
 نشر من قبل Stanislaw Jadach
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the {tt KKMC} program was published for the first time over 20 years ago, it has gained popularity and was exploited in a broad spectrum of applications. The core part of the program itself did not change much. In contrast, some of the libraries have evolved substantially. The aim of this publication is to archive fo

قيم البحث

اقرأ أيضاً

57 - Frederic Teubert 2002
This paper is an updated version of the invited plenary talk given at the XXII Physics in Collision Conference at Stanford, (June 2002). The measurements performed at LEP and SLC have substantially improved the precision of the tests of the Minimal S tandard Model. The precision is such that there is sensitivity to pure weak radiative corrections. This allows to indirectly determine the top mass (mt=178$pm$10 GeV), the W-boson mass (MW=80.368$pm$0.022 GeV), and to set an upper limit on the Higgs boson mass of 193 GeV at 95% confidence level.
We describe the program KKMC-hh, which calculates Z boson processes in hadronic collisions using coherent exclusive exponentiation (CEEX) with exact second-order photonic corrections at next-to-leading log and first-order weak vertex corrections, inc luding initial and final state photonic radiation and initial-final interference. We describe current applications to precision forward-backward asymmetry calculations for the measurement of the electroweak mixing angle at the LHC.
88 - E. Tournefier 2001
An update of the electroweak measurements at LEP and SLC is presented. These measurements are used to perform precise tests of the Standard Model. A constraint on the Standard Model Higgs mass is obtained when the direct measurements of $m_{top}$ and $M_W$ are included in the fit. A combination with the direct Higgs search is also shown.
Next-to-leading order (NLO) QCD predictions for the production of heavy quarks in proton-proton collisions are presented within three different approaches to quark mass, resummation and fragmentation effects. In particular, new NLO and parton shower simulations with POWHEG are performed in the ALICE kinematic regime at three different centre-of-mass energies, including scale and parton density variations, in order to establish a reliable baseline for future detailed studies of heavy-quark suppression in heavy-ion collisions. Very good agreement of POWHEG is found with FONLL, in particular for centrally produced D^0, D^+ and D^*+ mesons and electrons from charm and bottom quark decays, but also with the generally somewhat higher GM-VFNS predictions within the theoretical uncertainties. The latter are dominated by scale rather than quark mass variations. Parton density uncertainties for charm and bottom quark production are computed here with POWHEG for the first time and shown to be dominant in the forward regime, e.g. for muons coming from heavy-flavour decays. The fragmentation into D_s^+ mesons seems to require further tuning within the NLO Monte Carlo approach.
137 - J.H. Kuhn , A. Scharf , P.Uwer 2005
Top-quark physics plays an important role at hadron colliders such as the Tevatron at Fermilab or the LHC at CERN. Given the planned precision at these colliders, precise theoretical predictions are required. In this paper we present the complete ele ctroweak corrections to QCD-induced top-quark pair production in quark--antiquark annihilation. In particular we provide compact analytic expressions for the differential partonic cross section, which will be useful for further theoretical investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا