ﻻ يوجد ملخص باللغة العربية
Top-quark physics plays an important role at hadron colliders such as the Tevatron at Fermilab or the LHC at CERN. Given the planned precision at these colliders, precise theoretical predictions are required. In this paper we present the complete electroweak corrections to QCD-induced top-quark pair production in quark--antiquark annihilation. In particular we provide compact analytic expressions for the differential partonic cross section, which will be useful for further theoretical investigations.
We consider top quark pair production in association with a hard jet through next-to-leading order in perturbative QCD. Top quark decays are treated in the narrow width approximation and spin correlations are retained throughout the computation. We i
We present results for the next-to-leading order QCD corrections to the production and semi-leptonic decays of a top quark pair in hadron collisions, retaining all spin correlations. To evaluate the virtual corrections, we employ generalized D-dimens
We compute QCD corrections to the production of a ttbar pair in association with a hard photon at the Tevatron and the LHC. This process allows a direct measurement of the top quark electromagnetic couplings that, at the moment, are only loosely cons
We present a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion ($bbar{b} to hh$) at the CERN Large Hadron Collider (LHC) in the Standard Model. The NLO QCD correcti
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. St