ﻻ يوجد ملخص باللغة العربية
In this paper, by mapping datasets to a set of non-linear coherent states, the process of encoding inputs in quantum states as a non-linear feature map is re-interpreted. As a result of this fact that the Radial Basis Function is recovered when data is mapped to a complex Hilbert state represented by coherent states, non-linear coherent states can be considered as natural generalisation of associated kernels. By considering the non-linear coherent states of a quantum oscillator with variable mass, we propose a kernel function based on generalized hypergeometric functions, as orthogonal polynomial functions. The suggested kernel is implemented with support vector machine on two well known datasets (make circles, and make moons) and outperforms the baselines, even in the presence of high noise. In addition, we study impact of geometrical properties of feature space, obtaining by non-linear coherent states, on the SVM classification task, by using considering the Fubini-Study metric of associated coherent states.
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled st
We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given $n$ $d$-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with con
We exploit a novel approximation scheme to obtain a new and compact formula for the parameters underlying coherent-state control of the evolution of a pair of entangled two-level systems. It is appropriate for long times and for relatively strong ext
Black-box quantum state preparation is a fundamental primitive in quantum algorithms. Starting from Grover, a series of techniques have been devised to reduce the complexity. In this work, we propose to perform black-box state preparation using the t
Wave-based analog signal processing holds the promise of extremely fast, on-the-fly, power-efficient data processing, occurring as a wave propagates through an artificially engineered medium. Yet, due to the fundamentally weak non-linearities of trad