ﻻ يوجد ملخص باللغة العربية
In this work, we explore the feasibility of performing satellite-to-Earth quantum key distribution (QKD) using the orbital angular momentum (OAM) of light. Due to the fragility of OAM states the conventional wisdom is that turbulence would render OAM-QKD non-viable in a satellite-to-Earth channel. However, based on detailed phase screen simulations of the anticipated atmospheric turbulence we find that OAM-QKD is viable in some system configurations, especially if quantum channel information is utilized in the processing of post-selected states. More specifically, using classically entangled light as a probe of the quantum channel, and reasonably-sized transmitter-receiver apertures, we find that non-zero QKD rates are achievable on sea-level ground stations. Without using classical light probes, OAM-QKD is relegated to high-altitude ground stations with large receiver apertures. Our work represents the first quantitative assessment of the performance of OAM-QKD from satellites, showing under what circumstances the much-touted higher dimensionality of OAM can be utilized in the context of secure communications.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. In practice, the achievable distance for QKD has been limited to a few hundred kilo
Satellite-based quantum communications enable a bright future for global-scale information security. However, the spin orbital momentum of light, currently used in many mainstream quantum communication systems, only allows for quantum encoding in a t
Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations
Recently, large-scale quantum networks that connect metropolitan area quantum networks between cities have been realized by integrating free-space and fibre quantum key distribution (QKD) links, yet the fibre-based trusted nodes in such networks coul
Terahertz (THz) communication is a topic of much research in the context of high-capacity next-generation wireless networks. Quantum communication is also a topic of intensive research, most recently in the context of space-based deployments. In this