ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Orbital Angular Momentum of Light in Satellite-to-Ground Quantum Communications

120   0   0.0 ( 0 )
 نشر من قبل Ziqing Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Satellite-based quantum communications enable a bright future for global-scale information security. However, the spin orbital momentum of light, currently used in many mainstream quantum communication systems, only allows for quantum encoding in a two-dimensional Hilbert space. The orbital angular momentum (OAM) of light, on the other hand, enables quantum encoding in higher-dimensional Hilbert spaces, opening up new opportunities for high-capacity quantum communications. Due to its turbulence-induced decoherence effects, however, the atmospheric channel may limit the practical usage of OAM. In order to determine whether OAM is useful for satellite-based quantum communications, we numerically investigate the detection likelihoods for OAM states that traverse satellite-to-ground channels. We show that the use of OAM through such channels is in fact feasible. We use our new results to then investigate design specifications that could improve OAM detection - particularly the use of advanced adaptive optics techniques. Finally, we discuss how our work provides new insights into future implementations of space-based OAM systems within the context of quantum communications.

قيم البحث

اقرأ أيضاً

In this work, we explore the feasibility of performing satellite-to-Earth quantum key distribution (QKD) using the orbital angular momentum (OAM) of light. Due to the fragility of OAM states the conventional wisdom is that turbulence would render OAM -QKD non-viable in a satellite-to-Earth channel. However, based on detailed phase screen simulations of the anticipated atmospheric turbulence we find that OAM-QKD is viable in some system configurations, especially if quantum channel information is utilized in the processing of post-selected states. More specifically, using classically entangled light as a probe of the quantum channel, and reasonably-sized transmitter-receiver apertures, we find that non-zero QKD rates are achievable on sea-level ground stations. Without using classical light probes, OAM-QKD is relegated to high-altitude ground stations with large receiver apertures. Our work represents the first quantitative assessment of the performance of OAM-QKD from satellites, showing under what circumstances the much-touted higher dimensionality of OAM can be utilized in the context of secure communications.
Orbital angular momentum (OAM) of light is an attractive degree of freedom for funda- mentals studies in quantum mechanics. In addition, the discrete unbounded state-space of OAM has been used to enhance classical and quantum communications. Unambigu ous mea- surement of OAM is a key part of all such experiments. However, state-of-the-art methods for separating single photons carrying a large number of different OAM values are limited to a theoretical separation efficiency of about 77 percent. Here we demonstrate a method which uses a series of unitary optical transformations to enable the measurement of lights OAM with an experimental separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty achieved by our method makes it particu- larly attractive for enhancing the information capacity of multi-level quantum cryptography systems.
An arbitrary unknown quantum state cannot be precisely measured or perfectly replicated. However, quantum teleportation allows faithful transfer of unknown quantum states from one object to another over long distance, without physical travelling of t he object itself. Long-distance teleportation has been recognized as a fundamental element in protocols such as large-scale quantum networks and distributed quantum computation. However, the previous teleportation experiments between distant locations were limited to a distance on the order of 100 kilometers, due to photon loss in optical fibres or terrestrial free-space channels. An outstanding open challenge for a global-scale quantum internet is to significantly extend the range for teleportation. A promising solution to this problem is exploiting satellite platform and space-based link, which can conveniently connect two remote points on the Earth with greatly reduced channel loss because most of the photons propagation path is in empty space. Here, we report the first quantum teleportation of independent single-photon qubits from a ground observatory to a low Earth orbit satellite - through an up-link channel - with a distance up to 1400 km. To optimize the link efficiency and overcome the atmospheric turbulence in the up-link, a series of techniques are developed, including a compact ultra-bright source of multi-photon entanglement, narrow beam divergence, high-bandwidth and high-accuracy acquiring, pointing, and tracking (APT). We demonstrate successful quantum teleportation for six input states in mutually unbiased bases with an average fidelity of 0.80+/-0.01, well above the classical limit. This work establishes the first ground-to-satellite up-link for faithful and ultra-long-distance quantum teleportation, an essential step toward global-scale quantum internet.
We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-pha se turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. In practice, the achievable distance for QKD has been limited to a few hundred kilo meters, due to the channel loss of fibers or terrestrial free space that exponentially reduced the photon rate. Satellite-based QKD promises to establish a global-scale quantum network by exploiting the negligible photon loss and decoherence in the empty out space. Here, we develop and launch a low-Earth-orbit satellite to implement decoy-state QKD with over kHz key rate from the satellite to ground over a distance up to 1200 km, which is up to 20 orders of magnitudes more efficient than that expected using an optical fiber (with 0.2 dB/km loss) of the same length. The establishment of a reliable and efficient space-to-ground link for faithful quantum state transmission constitutes a key milestone for global-scale quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا