ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Ga$_2$O$_3$ glass: a large scale passivation and protection material for monolayer WS$_2$

218   0   0.0 ( 0 )
 نشر من قبل Matthias Wurdack
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, we show that the novel, ultrathin Ga$_2$O$_3$ glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga$_2$O$_3$ capping of commercial grade WS$_2$ monolayers outperforms hBN in both scalability and optical performance at room temperature. These properties make Ga$_2$O$_3$ highly suitable for large scale passivation and protection of monolayer TMDCs in functional heterostructures.

قيم البحث

اقرأ أيضاً

Point defects in crystalline materials often occur in multiple charge states. Although many experimental methods to study and explore point defects are available, techniques to explore the non-equilibrium dynamics of the charge states of these defect s at ultrafast (sub-nanosecond) time scales have not been discussed before. We present results from ultrafast optical-pump supercontinuum-probe spectroscopy measurements on $beta$-Ga$_2$O$_3$. The study of point defects in $beta$-Ga$_2$O$_3$ is essential for its establishment as a material platform for high-power electronics and deep-UV optoelectronics. Use of a supercontinuum probe allows us to obtain the time-resolved absorption spectra of material defects under non-equilibrium conditions with picosecond time resolution. The probe absorption spectra shows defect absorption peaks at two energies, $sim$2.2 eV and $sim$1.63 eV, within the 1.3-2.5 eV probe energy bandwidth. The strength of the absorption associated with each peak is time-dependent and the spectral weight shifts from the lower energy peak to the higher energy peak with pump-probe delay. Further, maximum defect absorption is seen for probe polarized along the crystal c-axis. The time-dependent probe absorption spectra and the observed dynamics for all probe wavelengths at all pump-probe delays can be fit with a set of rate equations for a single multi-level defect. Based on first-principles calculations within hybrid density functional theory we attribute the observed absorption features to optical transitions from the valence band to different charge states of Gallium vacancies. Our results demonstrate that broadband ultrafast supercontinuum spectroscopy can be a useful tool to explore charge states of defects and defect dynamics in semiconductors.
The dynamics of exciton formation in transition metal dichalcogenides is difficult to measure experimentally, since many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tuneable pump, high-har monic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS$_2$. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast timescale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic timescale and observe the formation of a momentum-forbidden dark K$Sigma$ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS$_2$.
118 - Alaska Subedi 2021
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag rees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.
91 - Tarun Agarwal , Youseung Lee , 2021
The continuous scaling of semiconductor technology has pushed the footprint of logic devices below 50 nm. Currently, logic standard cells with one single fin are being investigated to increase the integration density, although such options could seve rely limit the performance of individual devices. In this letter, we present a novel Trench (T-) FinFET device, composed of a monolayer two-dimensional (2D) channel material. The device characteristics of a monolayer WS$_2$-based T-FinFET are studied by combining the first-principles calculations and quantum transport (QT) simulations. These results serve as inputs to a predictive analytical model. The latter allows to benchmark the T-FinFET with strained (s)-Si FinFETs in both quasi-ballistic and diffusive transport regimes. The circuit-level evaluation highlights that WS$_2$ T-FinFETs exhibit a competitive energy-delay performance compared to s-Si FinFET and WS$_2$ double-gate transistors, assuming the same mobility and contact resistivity at small footprints.
We introduce a deep-recessed gate architecture in $beta$-Ga$_2$O$_3$ delta-doped field effect transistors for improvement in DC-RF dispersion and breakdown properties. The device design incorporates an unintentionally doped $beta$-Ga$_2$O$_3$ layer a s the passivation dielectric. To fabricate the device, the deep-recess geometry was developed using BCl$_3$ plasma based etching at ~5 W RIE to ensure minimal plasma damage. Etch damage incurred with plasma etching was mitigated by annealing in vacuum at temperatures above 600 $deg$C. A gate-connected field-plate edge termination was implemented for efficient field management. Negligible surface dispersion with lower knee-walkout at high V$_mathrm{DS}$, and better breakdown characteristics compared to their unpassivated counterparts were achieved. A three terminal off-state breakdown voltage of 315 V, corresponding to an average breakdown field of 2.3 MV/cm was measured. The device breakdown was limited by the field-plate/passivation edge and presents scope for further improvement. This demonstration of epitaxially passivated field effect transistors is a significant step for $beta$-Ga$_2$O$_3$ technology since the structure simultaneously provides control of surface-related dispersion and excellent field management.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا