ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of the Insight-HXMT/LE time response on timing analysis

148   0   0.0 ( 0 )
 نشر من قبل Dengke Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LE is the low energy telescope of Insight-HXMT. It uses swept charge devices (SCDs) to detect soft X-ray photons. The time response of LE is caused by the structure of SCDs. With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response (LTR) on the timing analysis from three aspects: the power spectral density, the pulse profile and the time lag. After the LTR, the value of power spectral density monotonously decreases with the increasing frequency. The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz. The corresponding frequency for QPO signals is 458 Hz. The Root mean square (RMS) of QPOs holds the similar behaviour. After the LTR, the centroid frequency and full width at half maxima (FWHM) of QPOs signals do not change. The LTR reduces the RMS of pulse profiles and shifts the pulse phase. In the time domain, the LTR only reduces the peak value of the crosscorrelation function while it does not change the peak position. Thus it will not affect the result of the time lag. When considering the time lag obtained from two instruments and one among them is LE, a 1.18 ms lag is expected caused by the LTR. The time lag calculated in the frequency domain is the same as that in the time domain.

قيم البحث

اقرأ أيضاً

The Hard X-ray Modulation Telescope (HXMT) named Insight is Chinas first X-ray astronomical satellite. The Low Energy X-ray Telescope (LE) is one of its main payloads onboard. The detectors of LE adopt swept charge device CCD236 with L-shaped transfe r electrodes. Charges in detection area are read out continuously along specific paths, which leads to a time response distribution of photons readout time. We designed a long exposure readout mode to measure the time response distribution. In this mode, CCD236 firstly performs exposure without readout, then all charges generated in preceding exposure phase are read out completely. Through analysis of the photons readout time in this mode, we obtained the probability distribution of photons readout time.
107 - Yong Chen , WeiWei Cui , Wei Li 2019
The low energy (LE) X-ray telescope is one of the three main instruments of the Insight-Hard X-ray Modulation Telescope (Insight-HXMT). It is equipped with Swept Charge Device (SCD) sensor arrays with a total geometrical area of 384 cm2 and an energy band from 0.7 keV to 13 keV. In order to evaluate the particle induced X-ray background and the cosmic X-ray background simultaneously, LE adopts collimators to define four types of Field Of Views (FOVs). LE is constituted of three detector boxes (LEDs) and an electric control box (LEB) and achieves a good energy resolution of 140 eV at 5.9 keV, an excellent time resolution of 0.98 ms, as well as an extremely low pileup (<1% at 18000 cts/s). Detailed performance tests and calibration on the ground have been performed, including energy-channel relation, energy response, detection efficiency and time response.
83 - Y. Huang , J. L. Qu , S. N. Zhang 2018
We present the X-ray timing results of the new black hole candidate (BHC) MAXI J1535-571 during its 2017 outburst from Hard X-ray Modulation Telescope (emph{Insight}-HXMT) observations taken from 2017 September 6 to 23. Following the definitions give n by citet{Belloni2010}, we find that the source exhibits state transitions from Low/Hard state (LHS) to Hard Intermediate state (HIMS) and eventually to Soft Intermediate state (SIMS). Quasi-periodic oscillations (QPOs) are found in the intermediate states, which suggest different types of QPOs. With the large effective area of emph{Insight}-HXMT at high energies, we are able to present the energy dependence of the QPO amplitude and centroid frequency up to 100 keV which is rarely explored by previous satellites. We also find that the phase lag at the type-C QPOs centroid frequency is negative (soft lags) and strongly correlated with the centroid frequency. By assuming a geometrical origin of type-C QPOs, the source is consistent with being a high inclination system.
We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT, NICER and MAXI. This outburst can be classfied roughly into four differen t states. Type-C quasi-periodic oscillations (QPOs) observed by NICER (about 0.1-6Hz) and Insight-HXMT (about 0.7-8Hz) are also reported in this work. Meanwhile, we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in three energy band 1-10 keV indicates that there is a turning pointing in frequency around 2 Hz,which is similar to that of GRS 1915+105. A possible hypothesis for the relationship above may be related to the inclination of the source, which may require a high inclination to explain it. The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources, which can indicate that the origin of type-C QPOs is non-thermal.
We present a study of timing properties of the accreting pulsar 2S 1417-624 observed during its 2018 outburst, based on Swift/BAT, Fermi/GBM, Insight-HXMT and NICER observations. We report a dramatic change of the pulse profiles with luminosity. The morphology of the profile in the range 0.2-10.0keV switches from double to triple peaks at $sim2.5$ $rm times 10^{37}{it D}_{10}^2 erg s^{-1}$ and from triple to quadruple peaks at $sim7$ $rm times 10^{37}{it D}_{10}^2 erg s^{-1}$. The profile at high energies (25-100keV) shows significant evolutions as well. We explain this phenomenon according to existing theoretical models. We argue that the first change is related to the transition from the sub to the super-critical accretion regime, while the second to the transition of the accretion disc from the gas-dominated to the radiation pressure-dominated state. Considering the spin-up as well due to the accretion torque, this interpretation allows to estimate the magnetic field self-consistently at $sim7times 10^{12}$G.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا