ﻻ يوجد ملخص باللغة العربية
The low energy (LE) X-ray telescope is one of the three main instruments of the Insight-Hard X-ray Modulation Telescope (Insight-HXMT). It is equipped with Swept Charge Device (SCD) sensor arrays with a total geometrical area of 384 cm2 and an energy band from 0.7 keV to 13 keV. In order to evaluate the particle induced X-ray background and the cosmic X-ray background simultaneously, LE adopts collimators to define four types of Field Of Views (FOVs). LE is constituted of three detector boxes (LEDs) and an electric control box (LEB) and achieves a good energy resolution of 140 eV at 5.9 keV, an excellent time resolution of 0.98 ms, as well as an extremely low pileup (<1% at 18000 cts/s). Detailed performance tests and calibration on the ground have been performed, including energy-channel relation, energy response, detection efficiency and time response.
The Medium Energy X-ray telescope (ME) is one of the three main telescopes on board the Insight Hard X-ray Modulation Telescope (Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 keV with a total geometr
The Insight-Hard X-ray Modulation Telescope (Insight-HXMT) is a broad band X-ray and gamma-ray (1-3000 keV) astronomy satellite. The High Energy X-ray telescope (HE) is one of its three main telescopes. The main detector plane of HE is composed of 18
As Chinas first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capabili
With more than 150 blank sky observations at high Galactic latitude, we make a systematic study to the background of the Low Energy Telescope (LE) of the Hard X-ray Modulation Telescope (dubbed as Insight-HXMT). Both the on-ground simulation and the
In this work, we report the in-orbit demonstration of X-ray pulsar navigation with Insight-Hard X-ray Modulation Telescope (Insight-HXMT), which was launched on Jun. 15th, 2017. The new pulsar navigation method Significance Enhancement of Pulse-profi