ﻻ يوجد ملخص باللغة العربية
Neuromorphic computing uses brain-inspired principles to design circuits that can perform computational tasks with superior power efficiency to conventional computers. Approaches that use traditional electronic devices to create artificial neurons and synapses are, however, currently limited by the energy and area requirements of these components. Spintronic nanodevices, which exploit both the magnetic and electrical properties of electrons, can increase the energy efficiency and decrease the area of these circuits, and magnetic tunnel junctions are of particular interest as neuromorphic computing elements because they are compatible with standard integrated circuits and can support multiple functionalities. Here we review the development of spintronic devices for neuromorphic computing. We examine how magnetic tunnel junctions can serve as synapses and neurons, and how magnetic textures, such as domain walls and skyrmions, can function as neurons. We also explore spintronics-based implementations of neuromorphic computing tasks, such as pattern recognition in an associative memory, and discuss the challenges that exist in scaling up these systems.
Metal-Nb$_{2}$O$_{5-x}$-metal memdiodes exhibiting rectification, hysteresis, and capacitance are demonstrated for applications in neuromorphic circuitry. These devices do not require any post-fabrication treatments such as filament creation by elect
Ferroelectric tunnel junctions (FTJ) based on hafnium zirconium oxide (Hf1-xZrxO2; HZO) are a promising candidate for future applications, such as low-power memories and neuromorphic computing. The tunneling electroresistance (TER) is tunable through
We present the concept of magnetic gas detection by the Extraordinary Hall effect (EHE). The technique is compatible with the existing conductometric gas detection technologies and allows simultaneous measurement of two independent parameters: resist
Since the experimental discovery of magnetic skyrmions achieved one decade ago, there have been significant efforts to bring the virtual particles into all-electrical fully functional devices, inspired by their fascinating physical and topological pr
Spin-based electronics has evolved into a major field of research that broadly encompasses different classes of materials, magnetic systems, and devices. This review describes recent advances in spintronics that have the potential to impact key areas