ﻻ يوجد ملخص باللغة العربية
We present the concept of magnetic gas detection by the Extraordinary Hall effect (EHE). The technique is compatible with the existing conductometric gas detection technologies and allows simultaneous measurement of two independent parameters: resistivity and magnetization affected by the target gas. Feasibility of the approach is demonstrated by detecting low concentration hydrogen using thin CoPd films as the sensor material. The Hall effect sensitivity of the optimized samples exceeds 240% per 104 ppm at hydrogen concentrations below 0.5% in the hydrogen/nitrogen atmosphere, which is more than two orders of magnitude higher than the sensitivity of the conductance detection.
Neuromorphic computing uses brain-inspired principles to design circuits that can perform computational tasks with superior power efficiency to conventional computers. Approaches that use traditional electronic devices to create artificial neurons an
This paper deals with the modeling of sensitivity of epitaxial graphene Hall bars, from sub-micrometer to micrometer size, to the stray field generated by a magnetic microbead. To demonstrate experiment feasibility, the model is first validated by co
Spin-based electronics has evolved into a major field of research that broadly encompasses different classes of materials, magnetic systems, and devices. This review describes recent advances in spintronics that have the potential to impact key areas
Magnetically ordered, electrically insulating materials pave the way towards novel spintronic devices. In these materials the flow of magnetic excitations such as magnons results in pure spin currents. These spin currents can be driven by gradients o
Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-indepe