ترغب بنشر مسار تعليمي؟ اضغط هنا

Cutwidth and degeneracy of graphs

120   0   0.0 ( 0 )
 نشر من قبل Benoit Kloeckner
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Benoit Kloeckner




اسأل ChatGPT حول البحث

We prove an inequality involving the degeneracy, the cutwidth and the sparsity of graphs. It implies a quadratic lower bound on the cutwidth in terms of the degeneracy for all graphs and an improvement of it for clique-free graphs.

قيم البحث

اقرأ أيضاً

A $k$-linear coloring of a graph $G$ is an edge coloring of $G$ with $k$ colors so that each color class forms a linear forest -- a forest whose each connected component is a path. The linear arboricity $chi_l(G)$ of $G$ is the minimum integer $k$ su ch that there exists a $k$-linear coloring of $G$. Akiyama, Exoo and Harary conjectured in 1980 that for every graph $G$, $chi_l(G)leq left lceil frac{Delta(G)+1}{2}rightrceil$ where $Delta(G)$ is the maximum degree of $G$. First, we prove the conjecture for 3-degenerate graphs. This establishes the conjecture for graphs of treewidth at most 3 and provides an alternative proof for the conjecture in some classes of graphs like cubic graphs and triangle-free planar graphs for which the conjecture was already known to be true. Next, for every 2-degenerate graph $G$, we show that $chi_l(G)=leftlceilfrac{Delta(G)}{2}rightrceil$ if $Delta(G)geq 5$. We conjecture that this equality holds also when $Delta(G)in{3,4}$ and show that this is the case for some well-known subclasses of 2-degenerate graphs. All our proofs can be converted into linear time algorithms.
Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ i s minimum possible. In this paper, we determine an addressing of length $k(n-k)$ for the Johnson graphs $J(n,k)$ and we show that our addressing is optimal when $k=1$ or when $k=2, n=4,5,6$, but not when $n=6$ and $k=3$. We study the addressing problem as well as a variation of it in which the alphabet used has more than three symbols, for other graphs such as complete multipartite graphs and odd cycles. We also present computations describing the distribution of the minimum length of addressings for connected graphs with up to $10$ vertices. Motivated by these computations we settle a problem of Graham, showing that most graphs on $n$ vertices have an addressing of length at most $n-(2-o(1))log_2 n$.
An (improper) graph colouring has defect $d$ if each monochromatic subgraph has maximum degree at most $d$, and has clustering $c$ if each monochromatic component has at most $c$ vertices. This paper studies defective and clustered list-colourings fo r graphs with given maximum average degree. We prove that every graph with maximum average degree less than $frac{2d+2}{d+2} k$ is $k$-choosable with defect $d$. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree $m$, no $(1-epsilon)m$ bound on the number of colours was previously known. The above result with $d=1$ solves this problem. It implies that every graph with maximum average degree $m$ is $lfloor{frac{3}{4}m+1}rfloor$-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree $m$ is $lfloor{frac{7}{10}m+1}rfloor$-choosable with clustering $9$, and is $lfloor{frac{2}{3}m+1}rfloor$-choosable with clustering $O(m)$. As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented.
224 - Emmanuel Abbe , Peter Ralli 2020
The r-th power of a graph modifies a graph by connecting every vertex pair within distance r. This paper gives a generalization of the Alon-Boppana Theorem for the r-th power of graphs, including irregular graphs. This leads to a generalized notion o f Ramanujan graphs, those for which the powered graph has a spectral gap matching the derived Alon-Boppana bound. In particular, we show that certain graphs that are not good expanders due to local irregularities, such as Erdos-Renyi random graphs, become almost Ramanujan once powered. A different generalization of Ramanujan graphs can also be obtained from the nonbacktracking operator. We next argue that the powering operator gives a more robust notion than the latter: Sparse Erdos-Renyi random graphs with an adversary modifying a subgraph of log(n)^c$ vertices are still almost Ramanujan in the powered sense, but not in the nonbacktracking sense. As an application, this gives robust community testing for different block models.
A piecewise linear curve in the plane made up of $k+1$ line segments, each of which is either horizontal or vertical, with consecutive segments being of different orientation is called a $k$-bend path. Given a graph $G$, a collection of $k$-bend path s in which each path corresponds to a vertex in $G$ and two paths have a common point if and only if the vertices corresponding to them are adjacent in $G$ is called a $B_k$-VPG representation of $G$. Similarly, a collection of $k$-bend paths each of which corresponds to a vertex in $G$ is called an $B_k$-EPG representation of $G$ if any two paths have a line segment of non-zero length in common if and only if their corresponding vertices are adjacent in $G$. The VPG bend-number $b_v(G)$ of a graph $G$ is the minimum $k$ such that $G$ has a $B_k$-VPG representation. Similarly, the EPG bend-number $b_e(G)$ of a graph $G$ is the minimum $k$ such that $G$ has a $B_k$-EPG representation. Halin graphs are the graphs formed by taking a tree with no degree $2$ vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if $G$ is a Halin graph then $b_v(G) leq 1$ and $b_e(G) leq 2$. These bounds are tight. In fact, we prove the stronger result that if $G$ is a planar graph formed by connecting the leaves of any tree to form a simple cycle, then it has a VPG-representation using only one type of 1-bend paths and an EPG-representation using only one type of 2-bend paths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا