ترغب بنشر مسار تعليمي؟ اضغط هنا

Cost-Efficient RIS-Aided Channel Estimation via Rank-One Matrix Factorization

178   0   0.0 ( 0 )
 نشر من قبل Wei Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

A reconfigurable intelligent surface (RIS) consists of massive meta elements, which can improve the performance of future wireless communication systems. Existing RIS-aided channel estimation methods try to estimate the cascaded channel directly, incurring high computational and training overhead especially when the number of elements of RIS is extremely large. In this paper, we propose a cost-efficient channel estimation method via rank-one matrix factorization (MF). Specifically, if the RIS is employed near base station (BS), it is found that the RIS- aided channel can be factorized into a product of low-dimensional matrices. To estimate these factorized matrices, we propose alternating minimization and gradient descent approaches to obtain the near optimal solutions. Compared to directly estimating the cascaded channel, the proposed MF method reduces training overhead substantially. Finally, the numerical simulations show the effectiveness of the proposed MF method.



قيم البحث

اقرأ أيضاً

433 - Xu Shi , Jintao Wang , Guozhi Chen 2021
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amoun t of parameters in cascaded channel. The existing compressive sensing (CS)-based RIS estimation schemes only adopt incomplete sparsity, which induces redundant pilot consumption. In this paper, we exploit the specific triple-structured sparsity of the cascaded channel, i.e., the common column sparsity, structured row sparsity after offset compensation and the common offsets among all users. Then a novel multi-user joint estimation algorithm is proposed. Simulation results show that our approach can significantly reduce pilot overhead in both ULA and UPA scenarios.
This paper investigates the problem of model aggregation in federated learning systems aided by multiple reconfigurable intelligent surfaces (RISs). The effective integration of computation and communication is achieved by over-the-air computation (A irComp). Since all local parameters are transmitted over shared wireless channels, the undesirable propagation error inevitably deteriorates the performance of global aggregation. The objective of this work is to 1) reduce the signal distortion of AirComp; 2) enhance the convergence rate of federated learning. Thus, the mean-square-error and the device set are optimized by designing the transmit power, controlling the receive scalar, tuning the phase shifts, and selecting participants in the model uploading process. The formulated mixed-integer non-linear problem (P0) is decomposed into a non-convex problem (P1) with continuous variables and a combinatorial problem (P2) with integer variables. To solve subproblem (P1), the closed-form expressions for transceivers are first derived, then the multi-antenna cases are addressed by the semidefinite relaxation. Next, the problem of phase shifts design is tackled by invoking the penalty-based successive convex approximation method. In terms of subproblem (P2), the difference-of-convex programming is adopted to optimize the device set for convergence acceleration, while satisfying the aggregation error demand. After that, an alternating optimization algorithm is proposed to find a suboptimal solution for problem (P0). Finally, simulation results demonstrate that i) the designed algorithm can converge faster and aggregate model more accurately compared to baselines; ii) the training loss and prediction accuracy of federated learning can be improved significantly with the aid of multiple RISs.
We consider the estimation of a n-dimensional vector x from the knowledge of noisy and possibility non-linear element-wise measurements of xxT , a very generic problem that contains, e.g. stochastic 2-block model, submatrix localization or the spike perturbation of random matrices. We use an interpolation method proposed by Guerra and later refined by Korada and Macris. We prove that the Bethe mutual information (related to the Bethe free energy and conjectured to be exact by Lesieur et al. on the basis of the non-rigorous cavity method) always yields an upper bound to the exact mutual information. We also provide a lower bound using a similar technique. For concreteness, we illustrate our findings on the sparse PCA problem, and observe that (a) our bounds match for a large region of parameters and (b) that it exists a phase transition in a region where the spectum remains uninformative. While we present only the case of rank-one symmetric matrix estimation, our proof technique is readily extendable to low-rank symmetric matrix or low-rank symmetric tensor estimation
134 - Yuanwei Liu , Xidong Mu , Xiao Liu 2020
This article focuses on the exploitation of reconfigurable intelligent surfaces (RISs) in multi-user networks employing orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA), with an emphasis on investigating the interplay between NOMA and RIS. Depending on whether the RIS reflection coefficients can be adjusted only once or multiple times during one transmission, we distinguish between static and dynamic RIS configurations. In particular, the capacity region of RIS aided single-antenna NOMA networks is characterized and compared with the OMA rate region from an information-theoretic perspective, revealing that the dynamic RIS configuration is capacity-achieving. Then, the impact of the RIS deployment location on the performance of different multiple access schemes is investigated, which reveals that asymmetric and symmetric deployment strategies are preferable for NOMA and OMA, respectively. Furthermore, for RIS aided multiple-antenna NOMA networks, three novel joint active and passive beamformer designs are proposed based on both beamformer based and cluster based strategies. Finally, open research problems for RIS-NOMA networks are highlighted.
Reconfigurable intelligent surfaces (RISs) have recently received widespread attention in the field of wireless communication. An RIS can be controlled to reflect incident waves from the transmitter towards the receiver; a feature that is believed to fundamentally contribute to beyond 5G wireless technology. The typical RIS consists of entirely passive elements, which requires the high-dimensional channel estimation to be done elsewhere. Therefore, in this paper, we present a semi-passive large-scale RIS architecture equipped with only a small fraction of simplified receiver units with only 1-bit quantization. Based on this architecture, we first propose an alternating direction method of multipliers (ADMM)-based approach to recover the training signals at the passive RIS elements, We then obtain the global channel by combining a channel sparsification step with the generalized approximate message passing (GAMP) algorithm. Our proposed scheme exploits both the sparsity and low-rankness properties of the channel in the joint spatial-frequency domain of a wideband mmWave multiple-input-multiple-output (MIMO) communication system. Simulation results show that the proposed algorithm can significantly reduce the pilot signaling needed for accurate channel estimation and outperform previous methods, even with fewer receiver units.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا