ﻻ يوجد ملخص باللغة العربية
Time-dependent covariant density functional theory with the successful density functional PCPK1 is developed in a three-dimensional coordinate space without any symmetry restrictions, and benchmark calculations for the 16O + 16O reaction are performed systematically. The relativistic kinematics, the conservation laws of the momentum, total energy, and particle number, as well as the time-reversal invariance are examined and confirmed to be satisfied numerically. Two primary applications including the dissipation dynamics and above-barrier fusion cross sections are illustrated. The obtained results are in good agreement with the ones given by the nonrelativistic time-dependent density functional theory and the data available. This demonstrates that the newly developed time-dependent covariant density functional theory could serve as an effective approach for the future studies of nuclear dynamical processes.
The toroidal states in $^{28}$Si with spin extending to extremely high are investigated with the cranking covariant density functional theory on a 3D lattice. Thirteen toroidal states with spin $I$ ranging from 0 to 56$hbar$ are obtained, and their s
The soliton existence in sub-atomic many-nucleon systems is discussed. In many nucleon dynamics represented by the nuclear time-dependent density functional formalism, much attention is paid to energy and mass dependence of the soliton existence. In
The stability of the linear chain structure of three $alpha$ clusters for $^{12}$C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle mo
The properties of the alpha+28Si and 16O+16O molecular states which are embedded in the excited states of 32S and can have an impact on the stellar reactions are investigated using the antisymmetrized molecular dynamics. From the analysis of the clus