ﻻ يوجد ملخص باللغة العربية
Previous studies have shown that rate-induced transitions can occur in pullback attractors of systems subject to parameter shifts between two asymptotically steady values of a system parameter. For cases where the attractors limit to equilibrium or periodic orbit in past and future limits of such an nonautonomous systems, these can occur as the parameter change passes through a critical rate. Such rate-induced transitions for attractors that limit to chaotic attractors in past or future limits has been less examined. In this paper, we identify a new phenomenon is associated with more complex attractors in the future limit: weak tracking, where a pullback attractor of the system limits to a proper subset of an attractor of the future limit system. We demonstrate weak tracking in a nonautonomous Rossler system, and argue there are infinitely many critical rates at each of which the pullback attracting solution of the system tracks an embedded unstable periodic orbit of the future chaotic attractor. We also state some necessary conditions that are needed for weak tracking.
Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$
In this paper, we study the Poisson stability (in particular, stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, almost automorphy, recurrence in the sense of Birkhoff, Levitan almost periodicity, pseudo periodicity, almost recurr
This paper studies the dynamics of families of monotone nonautonomous neutral functional differential equations with nonautonomous operator, of great importance for their applications to the study of the long-term behavior of the trajectories of prob
We introduce a new concept of finite-time entropy which is a local version of the classical concept of metric entropy. Based on that, a finite-time version of Pesins entropy formula and also an explicit formula of finite-time entropy for $2$-D system
For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. Moreover, we introduce the notion of weak kinematical similarity and prove a reducibility result by the spectral theorem.