ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak tracking in nonautonomous chaotic systems

67   0   0.0 ( 0 )
 نشر من قبل Hassan Alkhayuon
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies have shown that rate-induced transitions can occur in pullback attractors of systems subject to parameter shifts between two asymptotically steady values of a system parameter. For cases where the attractors limit to equilibrium or periodic orbit in past and future limits of such an nonautonomous systems, these can occur as the parameter change passes through a critical rate. Such rate-induced transitions for attractors that limit to chaotic attractors in past or future limits has been less examined. In this paper, we identify a new phenomenon is associated with more complex attractors in the future limit: weak tracking, where a pullback attractor of the system limits to a proper subset of an attractor of the future limit system. We demonstrate weak tracking in a nonautonomous Rossler system, and argue there are infinitely many critical rates at each of which the pullback attracting solution of the system tracks an embedded unstable periodic orbit of the future chaotic attractor. We also state some necessary conditions that are needed for weak tracking.



قيم البحث

اقرأ أيضاً

Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$ vanishes, then so does that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$; moreover, once the topological entropy of $(X,{f_n}_{n=1}^{+infty})$ is positive, that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$ jumps to infinity. In contrast to Bowens inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension.
170 - David Cheban , Zhenxin Liu 2017
In this paper, we study the Poisson stability (in particular, stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, almost automorphy, recurrence in the sense of Birkhoff, Levitan almost periodicity, pseudo periodicity, almost recurr ence in the sense of Bebutov, pseudo recurrence, Poisson stability) of motions for monotone nonautonomous dynamical systems and of solutions for some classes of monotone nonautonomous evolution equations (ODEs, FDEs and parabolic PDEs). As a byproduct, some of our results indicate that all the trajectories of monotone systems converge to the above mentioned Poisson stable trajectories under some suitable conditions, which is interesting in its own right for monotone dynamics.
This paper studies the dynamics of families of monotone nonautonomous neutral functional differential equations with nonautonomous operator, of great importance for their applications to the study of the long-term behavior of the trajectories of prob lems described by this kind of equations, such us compartmental systems and neural networks among many others. Precisely, more general admissible initial conditions are included in the study to show that the solutions are asymptotically of the same type as the coefficients of the neutral and non-neutral part.
We introduce a new concept of finite-time entropy which is a local version of the classical concept of metric entropy. Based on that, a finite-time version of Pesins entropy formula and also an explicit formula of finite-time entropy for $2$-D system s are derived. We also discuss about how to apply the finite-time entropy field to detect special dynamical structures such as Lagrangian coherent structures.
For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. Moreover, we introduce the notion of weak kinematical similarity and prove a reducibility result by the spectral theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا