ترغب بنشر مسار تعليمي؟ اضغط هنا

Poisson stable motions of monotone nonautonomous dynamical systems

171   0   0.0 ( 0 )
 نشر من قبل Zhenxin Liu
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the Poisson stability (in particular, stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, almost automorphy, recurrence in the sense of Birkhoff, Levitan almost periodicity, pseudo periodicity, almost recurrence in the sense of Bebutov, pseudo recurrence, Poisson stability) of motions for monotone nonautonomous dynamical systems and of solutions for some classes of monotone nonautonomous evolution equations (ODEs, FDEs and parabolic PDEs). As a byproduct, some of our results indicate that all the trajectories of monotone systems converge to the above mentioned Poisson stable trajectories under some suitable conditions, which is interesting in its own right for monotone dynamics.

قيم البحث

اقرأ أيضاً

Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$ vanishes, then so does that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$; moreover, once the topological entropy of $(X,{f_n}_{n=1}^{+infty})$ is positive, that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$ jumps to infinity. In contrast to Bowens inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension.
This paper studies the dynamics of families of monotone nonautonomous neutral functional differential equations with nonautonomous operator, of great importance for their applications to the study of the long-term behavior of the trajectories of prob lems described by this kind of equations, such us compartmental systems and neural networks among many others. Precisely, more general admissible initial conditions are included in the study to show that the solutions are asymptotically of the same type as the coefficients of the neutral and non-neutral part.
Two types of dynamics, chaotic and monotone, are compared. It is shown that monotone maps in strongly ordered spaces do not have chaotic attracting sets.
We introduce a new concept of finite-time entropy which is a local version of the classical concept of metric entropy. Based on that, a finite-time version of Pesins entropy formula and also an explicit formula of finite-time entropy for $2$-D system s are derived. We also discuss about how to apply the finite-time entropy field to detect special dynamical structures such as Lagrangian coherent structures.
126 - Morris W. Hirsch 2016
Let X be a subset of R^n whose interior is connected and dense in X, ordered by a polyhedral cone in R^n with nonempty interior. Let T be a monotone homeomorphism of X whose periodic points are dense. Then T is periodic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا