ﻻ يوجد ملخص باللغة العربية
In this work we introduce the Dual Boson Diagrammatic Monte Carlo technique for strongly interacting electronic systems. This method combines the strength of dynamical mean-filed theory for non-perturbative description of local correlations with the systematic account of non-local corrections in the Dual Boson theory by the diagrammatic Monte Carlo approach. It allows us to get a numerically exact solution of the dual boson theory at the two-particle local vertex level for the extended Hubbard model. We show that it can be efficiently applied to description of single particle observables in a wide range of interaction strengths. We compare our exact results for the self-energy with the ladder Dual Boson approach and determine a physical regime, where description of collective electronic effects requires more accurate consideration beyond the ladder approximation. Additionally, we find that the order-by-order analysis of the perturbative diagrammatic series for the single-particle Greens function allows to estimate the transition point to the charge density wave phase.
The dual-fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, negle
We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the qualit
We present a simple trick that allows to consider the sum of all connected Feynman diagrams at fixed position of interaction vertices for general fermionic models. With our approach one achieves superior performance compared to Diagrammatic Monte Car
Using first-principle Hybrid-Monte-Carlo (HMC) simulations, we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in the extended Hubbard model on the two dimensional hexagonal lattice a
Diagrammatic expansions are a central tool for treating correlated electron systems. At thermal equilibrium, they are most naturally defined within the Matsubara formalism. However, extracting any dynamic response function from a Matsubara calculatio