ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoinduced $eta$-pairing at finite temperatures

98   0   0.0 ( 0 )
 نشر من قبل Satoshi Ejima
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically prove photoinduced $eta$-pairing in a half-filled fermionic Hubbard chain at both zero and finite temperature. The result, obtained by combining the matrix-product-state based infinite time-evolving block decimation technique and the purification method, applies to the thermodynamic limit. Exciting the Mott insulator by a laser electric field docked on via the Peierls phase, we track the time-evolution of the correlated many-body system and determine the optimal parameter set for which the nonlocal part of the $eta$-pair correlation function becomes dominant during the laser pump at zero and low temperatures. These correlations vanish at higher temperatures and long times after pulse irradiation. In the high laser frequency strong Coulomb coupling regime we observe a remnant enhancement of the Brillouin-zone boundary pair-correlation function also at high temperatures, if the Hubbard interaction is about a multiple of the laser frequency, which can be attributed to an enhanced double occupancy in the virtual Floquet state.



قيم البحث

اقرأ أيضاً

By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairin g mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of $eta$ pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram and also provides an alternative mechanism for enhancing superconductivity.
Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the $eta$-pairing mechanism in the half-filled Hubbard chain. We estimate the characteristic pair correlation function and verify the accuracy of our numerical results by comparison with exact-diagonalization data for small systems. The optimal parameter set of the pump that most enhances the $eta$-pair correlations, is calculated in the strong-coupling regime. For such a pump, we explore the possibility of quasi-long-range order.
The previous theoretical study has shown that pulse irradiation to the Mott insulating state in the Hubbard model can induce the enhancement of superconducting correlation due to the generation of $eta$ pairs. Here, we show that the same mechanism ca n be applied to the Kondo lattice model, an effective model for heavy electron systems, by demonstrating that the pulse irradiation indeed enhances the $eta$-pairing correlation. As in the case of the Hubbard model, the non-linear optical process is essential to increase the number of photoinduced $eta$ pairs and thus the enhancement of the superconducting correlation. We also find the diffusive behavior of the spin dynamics after the pulse irradiation, suggesting that the increase of the number of $eta$ pairs leads to the decoupling between the conduction band and the localized spins in the Kondo lattice model, which is inseparably related to the photodoping effect.
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp litude of the BCS order parameter averaged over the Boltzman distribution of initial states exhibits damped oscillations with a relatively short decay time. The latter is determined by the temperature, the single-particle level spacing, and the ground state value of the BCS gap for the new coupling. In contrast, the decay is essentially absent when the system was in a superfluid phase before the coupling increase.
Significant advances in numerical techniques have enabled recent breakthroughs in the study of various properties of the Hubbard model - a seemingly simple, yet complex model of correlated electrons that has been a focus of study for more than half a century. In particular, it captures the essence of strong correlations, and is believed to possess various emergent, low energy states and collective excitations characteristic of cuprate high-temperature superconducting materials. While a thorough review of all activity is not possible here, we have focused the discussion on our recent work using unbiased, numerically exact, ``brute force, finite temperature quantum Monte Carlo methods. Our various studies reveal a rich variety of quantum liquid crystal phases, and complementary transport properties, which answer some questions, but certainly raise others concerning ``strange metal behavior and the ultimate fate of quasiparticles in the Hubbard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا