ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical followup of galaxy clusters detected by the South Pole Telescope

61   0   0.0 ( 0 )
 نشر من قبل Shantanu Desai
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The South Pole Telescope (SPT) is a 10 meter telescope operating at mm wavelengths. It has recently completed a three-band survey covering 2500 sq. degrees. One of the surveys main goals is to detect galaxy clusters using Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological and astrophysical studies such as the dark energy equation of state, the primordial non-gaussianity and the evolution of galaxy populations. Since 2005, we have been engaged in a comprehensive optical and near-infrared followup program (at wavelengths between 0.4 and 5 {mu}m) to image high-significance SPT clusters, to measure their photometric redshifts, and to estimate the contamination rate of the candidate lists. These clusters are then used for various cosmological and astrophysical studies.

قيم البحث

اقرأ أيضاً

We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev--Zeldovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg^2 observed with the South Pole Telescope (SPT) and followed up b y the Chandra X-ray Observatory. They form an approximately mass-limited sample (> 3 x 10^14 M_sun h^-1_70) spanning redshifts 0.3 < z < 1.1. Using previously published X-ray-selected cluster samples, we compare two proxies of cool-core strength: surface brightness concentration (cSB) and cuspiness ({alpha}). We find that cSB is better constrained. We measure cSB for the SPT sample and find several new z > 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4{sigma} level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z cSB distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time.
We present a detection-significance-limited catalog of 21 Sunyaev-Zeldovich selected galaxy clusters. These clusters, along with 1 unconfirmed candidate, were identified in 178 deg^2 of sky surveyed in 2008 by the South Pole Telescope to a depth of 1 8 uK-arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z=0.15 to z>1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, three were previously identified as Abell clusters, three were presented as SPT discoveries in Staniszewski et al, 2009, and three were first identified in a recent analysis of BCS data by Menanteau et al, 2010; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M_200 ~ 5x10^14 M_sun/h at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to ~4x10^14 M_sun/h at z=1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use the cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP 7-year analysis yields sigma_8 = 0.81 +- 0.09 and w = -1.07 +- 0.29, a ~50% improvement in precision on both parameters over WMAP7 alone.
We estimate total mass ($M_{500}$), intracluster medium (ICM) mass ($M_{mathrm{ICM}}$) and stellar mass ($M_{star}$) in a Sunyaev-Zeldovich effect (SZE) selected sample of 91 galaxy clusters with masses $M_{500}gtrsim2.5times10^{14}M_{odot}$ and reds hift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $M_{500}$ are estimated from the SZE observable, the ICM masses $M_{mathrm{ICM}}$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $M_{star}$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $approx9$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called missing baryons outside cluster virial regions.
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly $0.85sigma$ in units of the statistical error bar, although this estimate should be viewed as an upper limit. We apply our maximum likelihood technique to 513 clusters selected via their SZ signatures in SPT data, and rule out the null hypothesis of no lensing at $3.1sigma$. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: $M_{200,mathrm{lens}} = 0.83_{-0.37}^{+0.38}, M_{200,mathrm{SZ}}$ (68% C.L., statistical error only).
139 - F. W. High , B. Stalder , J. Song 2010
We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zeldovich signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 square-degree area surveyed by the S outh Pole Telescope in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R_200 radii and M_200 masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z > 1. Redshifts inferred from mean red-sequence colors exhibit 2% RMS scatter in sigma_z/(1+z) with respect to the spectroscopic subsample for z < 1. We show that M_200 cluster masses derived from optical richness correlate with masses derived from South Pole Telescope data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large Sunyaev-Zeldovich surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا