ﻻ يوجد ملخص باللغة العربية
We analyze the role played by quantum fluctuations on a Raman Spin-Orbit Coupled system in the stripe phase. We show that beyond mean-field effects stabilize the collapse predicted by mean-field theory and induce the emergence of two phases: a gas and a liquid, which also show spatial periodicity along a privileged direction. We show that the energetically favored phase is determined by the Raman coupling and the spin-dependent scattering lengths. We obtain the ground-state solution of the finite system by solving the extended Gross-Pitaevskii equation and find self-bound, droplet-like solutions that feature internal structure through a striped pattern. We estimate the critical number for binding associated to these droplets and show that their value is experimentally accessible. We report an approximate energy functional in order to ease the evaluation of the Lee-Huang-Yang correction in practical terms.
Chirality represents a kind of symmetry breaking characterized by the noncoincidence of an object with its mirror image and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in u
We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relativ
We investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently
We study the spin squeezing in a spin-1/2 Bose-Einstein condensates (BEC) with Raman induced spin-orbit coupling (SOC). Under the condition of two-photon resonance and weak Raman coupling strength, the system possesses two degenerate ground states, u
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO coupled Bose-Einstein condensate (BEC