ﻻ يوجد ملخص باللغة العربية
Chirality represents a kind of symmetry breaking characterized by the noncoincidence of an object with its mirror image and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in ultracold atomic gases provides a new perspective to study quantum states with chirality. In this Letter, we demonstrate that the combined effects of spin-orbit coupling and interatomic soft-core long-range interaction can induce an exotic supersolid phase in which the chiral symmetry is broken with spontaneous emergence of circulating particle current. This implies that a finite angular momentum can be generated with neither rotation nor effective magnetic field. The direction of the angular momentum can be altered by adjusting the strength of spin-orbit coupling or interatomic interaction. The predicted chiral supersolid phase can be experimentally observed in Rydberg-dressed Bose-Einstein condensates with spin-orbit coupling.
Phases of matter are conventionally characterized by order parameters describing the type and degree of order in a system. For example, crystals consist of spatially ordered arrays of atoms, an order that is lost as the crystal melts. Like- wise in f
Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap, density modulations with periodicity given by th
A spin-orbit coupled two-dimensional (2D) Bose gas is shown to simultaneously possess quasi and true long-range order in the total and relative phase sectors, respectively. The total phase undergoes a Berenzinskii- Kosterlitz-Thouless transition to a
We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit coupled Bose gases. It is found that the SU(3) spin-orb
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dip