ﻻ يوجد ملخص باللغة العربية
In the digital era, users share their personal data with service providers to obtain some utility, e.g., access to high-quality services. Yet, the induced information flows raise privacy and integrity concerns. Consequently, cautious users may want to protect their privacy by minimizing the amount of information they disclose to curious service providers. Service providers are interested in verifying the integrity of the users data to improve their services and obtain useful knowledge for their business. In this work, we present a generic solution to the trade-off between privacy, integrity, and utility, by achieving authenticity verification of data that has been encrypted for offloading to service providers. Based on lattice-based homomorphic encryption and commitments, as well as zero-knowledge proofs, our construction enables a service provider to process and reuse third-party signed data in a privacy-friendly manner with integrity guarantees. We evaluate our solution on different use cases such as smart-metering, disease susceptibility, and location-based activity tracking, thus showing its versatility. Our solution achieves broad generality, quantum-resistance, and relaxes some assumptions of state-of-the-art solutions without affecting performance.
Privacy and security-related concerns are growing as machine learning reaches diverse application domains. The data holders want to train with private data while exploiting accelerators, such as GPUs, that are hosted in the cloud. However, Cloud syst
Online advertising fuels the (seemingly) free internet. However, although users can access most of the web services free of charge, they pay a heavy coston their privacy. They are forced to trust third parties and intermediaries, who not only collect
Resource Public Key Infrastructure (RPKI) is vital to the security of inter-domain routing. However, RPKI enables Regional Internet Registries (RIRs) to unilaterally takedown IP prefixes - indeed, such attacks have been launched by nation-state adver
The Domain Name System (DNS) was created to resolve the IP addresses of the web servers to easily remembered names. When it was initially created, security was not a major concern; nowadays, this lack of inherent security and trust has exposed the gl
Logistics Information System (LIS) is an interactive system that provides information for logistics managers to monitor and track logistics business. In recent years, with the rise of online shopping, LIS is becoming increasingly important. However,