ﻻ يوجد ملخص باللغة العربية
The morphology-density relationship states that dense cosmic environments such as galaxy clusters have an overabundance of quiescent elliptical galaxies, but it is unclear at which redshift this relationship is first established. We study the morphology of 4 clusters with $1.2<z<1.8$ using HST imaging and the morphology computation code statmorph. By comparing median morphology of cluster galaxies to CANDELS field galaxies using Monte Carlo analysis, we find that 2 out of 4 clusters (at z=1.19 and z=1.75) have an established morphology-density relationship with more than $3sigma$ significance. $sim$50% of galaxies in these clusters are bulge-dominated compared to $sim$30% in the field, and they are significantly more compact. This result is more significant for low-mass galaxies with $log M/M_odot lessapprox 10.5$, showing that low-mass galaxies are affected the most in clusters. We also find an intriguing system of two z $approx$ 1.45 clusters at a unusually small separation 2D separation of $3$ and 3D separation of $approx73$ Mpc that exhibit no morphology-density relationship but have enhanced merger signatures. We conclude that the environmental mechanism responsible for the morphology-density relationship is 1) already active as early as z=1.75, 2) forms compact, bulge-dominated galaxies and 3) affects primarily low-mass galaxies. However, there is a significant degree of intracluster variance that may depend on the larger cosmological environment in which the cluster is embedded.
Galaxy morphology and its evolution over the cosmic epoch hold important clues for understanding the regulation of star formation (SF). However, studying the relationship between morphology and SF has been hindered by the availability of consistent d
We present the Morphology-Density and Morphology-Radius relations (T-Sigma and T-R, respectively) obtained from the WINGS database of galaxies in nearby clusters. Aiming to achieve the best statistics, we exploit the whole sample of galaxies brighter
Measuring molecular gas mass is vital for understanding the evolution of galaxies at high redshifts (z$geq$1). Most measurements rely on CO as a tracer, but dependences on metallicity, dynamics and surface density lead to systematic uncertainties in
We study the distribution and dynamics of the circum- and intergalactic medium using a dense galaxy survey covering the field around the Q0107 system, a unique z~1 projected quasar triplet. With full Ly$alpha$ coverage along all three lines-of-sight
[abridged] New near-infrared surveys, using the HST, offer an unprecedented opportunity to study rest-frame optical galaxy morphologies at z>1 and to calibrate automated morphological parameters that will play a key role in classifying future massive