ﻻ يوجد ملخص باللغة العربية
[abridged] New near-infrared surveys, using the HST, offer an unprecedented opportunity to study rest-frame optical galaxy morphologies at z>1 and to calibrate automated morphological parameters that will play a key role in classifying future massive datasets like EUCLID or LSST. We study automated parameters (e.g. CAS, Gini, M20) of massive galaxies at 1<z<3, measure their dependence on wavelength and evolution with redshift and quantify the reliability of these parameters in discriminating between visually-determined morphologies, using machine learning algorithms. We find that the relative trends between morphological types observed in the low-redshift literature are preserved at z>1: bulge-dominated systems have systematically higher concentration and Gini coefficients and are less asymmetric and rounder than disk-dominated galaxies. However, at z>1, galaxies are, on average, 50% more asymmetric and have Gini and M20 values that are 10% higher and 20% lower respectively. In bulge-dominated galaxies, morphological parameters derived from the rest-frame UV and optical wavelengths are well correlated; however late-type galaxies exhibit higher asymmetry and clumpiness when measured in the rest-frame UV. We find that broad morphological classes (e.g. bulge vs. disk dominated) can be distinguished using parameters with high (80%) purity and completeness of 80%. In a similar vein, irregular disks and mergers can also be distinguished from bulges and regular disks with a contamination lower than 20%. However, mergers cannot be differentiated from the irregular morphological class using these parameters, due to increasingly asymmetry of non-interacting late-type galaxies at z>1. Our automated procedure is applied to the CANDELS GOODS-S field and compared with the visual classification recently released on the same area getting similar results.
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and catastrophic outlier fraction of photometric r
We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts ($z<0.3$). We combine this sample with new estimates of the major-merger pair fraction for
We present the data release of the Gemini-South GMOS spectroscopy in the fields of 11 galaxy groups at $0.8<z<1$, within the COSMOS field. This forms the basis of the Galaxy Environment Evolution Collaboration 2 (GEEC2) project to study galaxy evolut
We study the significance of mergers in the quenching of star formation in galaxies at z~1 by examining their color-mass distributions for different morphology types. We perform two-dimensional light profile fits to GOODS iz images of ~5000 galaxies
We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among th