ﻻ يوجد ملخص باللغة العربية
A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across the current layer in addition to density and magnetic field gradient. We find that none of X-point, flow stagnation point, and local current density peak coincide. Current and energy balance analyses around the flow stagnation point and current density peak show consistently that current dissipation is associated with the divergence of nongyrotropic electron pressure. Furthermore, the same pressure terms, when combined with shear-type gradients of the electron flow velocity, also serve to maintain local thermal energy against convective losses. These effects are similar to those found also in symmetric magnetic reconnection. In addition, we find here significant effects related to the convection of current, which we can relate to a generalized diamagnetic drift by the nongyrotropic pressure divergence. Therefore, only part of the pressure force serves to dissipate the current density. However, the prior conclusion that the role of the reconnection electric field is to maintain the current density, which was obtained for a symmetric system, applies here as well. Finally, we discuss related features of electron distribution function in the EDR.
The spreading of the X-line out of the reconnection plane under a strong guide field is investigated using large-scale three-dimensional (3D) particle-in-cell (PIC) simulations in asymmetric magnetic reconnection. A simulation with a thick, ion-scale
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnec
A great possible achievement for the MMS mission would be crossing electron diffusion regions (EDR). EDR are regions in proximity of reconnection sites where electrons decouple from field lines, breaking the frozen in condition. Decades of research o
Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earths magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASAs Magn
We have used the high-resolution data of the Magnetospheric Multiscale (MMS) mission dayside phase to identify twenty-one previously unreported encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversal