ترغب بنشر مسار تعليمي؟ اضغط هنا

A new Look at the Electron Diffusion Region in Asymmetric Magnetic Reconnection

129   0   0.0 ( 0 )
 نشر من قبل Michael Hesse
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across the current layer in addition to density and magnetic field gradient. We find that none of X-point, flow stagnation point, and local current density peak coincide. Current and energy balance analyses around the flow stagnation point and current density peak show consistently that current dissipation is associated with the divergence of nongyrotropic electron pressure. Furthermore, the same pressure terms, when combined with shear-type gradients of the electron flow velocity, also serve to maintain local thermal energy against convective losses. These effects are similar to those found also in symmetric magnetic reconnection. In addition, we find here significant effects related to the convection of current, which we can relate to a generalized diamagnetic drift by the nongyrotropic pressure divergence. Therefore, only part of the pressure force serves to dissipate the current density. However, the prior conclusion that the role of the reconnection electric field is to maintain the current density, which was obtained for a symmetric system, applies here as well. Finally, we discuss related features of electron distribution function in the EDR.



قيم البحث

اقرأ أيضاً

The spreading of the X-line out of the reconnection plane under a strong guide field is investigated using large-scale three-dimensional (3D) particle-in-cell (PIC) simulations in asymmetric magnetic reconnection. A simulation with a thick, ion-scale equilibrium current sheet (CS) reveals that the X-line spreads at the ambient ion/electron drift speeds, significantly slower than the Alfven speed based on the guide field $V_{Ag}$. Additional simulations with a thinner, sub-ion-scale CS show that the X-line spreads at $V_{Ag}$ (Alfvenic spreading), much higher than the ambient species drifts. An Alfvenic signal consistent with kinetic Alfven waves develops and propagates, leading to CS thinning and extending, which then results in reconnection onset. The continuous onset of reconnection in the signal propagation direction manifests as Alfvenic X-line spreading. The strong dependence on the CS thickness of the spreading speeds, and the X-line orientation are consistent with the collisionless tearing instability. Our simulations indicate that when the collisionless tearing growth is sufficiently strong in a thinner CS such that $gamma/Omega_{ci}gtrsimmathcal{O}(1)$, Alfvenic X-line spreading can take place. Our results compare favorably with a number of numerical simulations and recent magnetopause observations. A key implications is that the magnetopause CS is typically too thick for Alfvenic X-line spreading to effectively take place.
We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnec ting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earths dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earths polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.
A great possible achievement for the MMS mission would be crossing electron diffusion regions (EDR). EDR are regions in proximity of reconnection sites where electrons decouple from field lines, breaking the frozen in condition. Decades of research o n reconnection have produced a widely shared map of where EDRs are. We expect reconnection to take place around a so called x-point formed by the intersection of the separatrices dividing inflowing from outflowing plasma. The EDR forms around this x-point as a small electron scale box nested inside a larger ion diffusion region. But this point of view is based on a 2D mentality. We have recently proposed that once the problem is considered in full 3D, secondary reconnection events can form [Lapenta et al., Nature Physics, 11, 690, 2015] in the outflow regions even far downstream from the primary reconnection site. We revisit here this new idea confirming that even using additional indicators of reconnection and even considering longer periods and wider distances the conclusion remains true: secondary reconnection sites form downstream of a reconnection outflow causing a sort of chain reaction of cascading reconnection sites. If we are right, MMS will have an interesting journey even when not crossing necessarily the primary site. The chances are greatly increased that even if missing a primary site during an orbit, MMS could stumble instead on one of these secondary sites.
Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earths magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASAs Magn etospheric Multiscale (MMS) spacecraft in the magnetotail, where reconnection involves symmetric inflow conditions. The unprecedented electron-scale plasma measurements revealed (1) super-Alfvenic electron jets reaching 20,000 km/s, (2) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures, (3) spatial dimensions of the electron diffusion region implying a reconnection rate of 0.1-0.2. The well-structured multiple layers of electron populations indicate that, despite the presence of turbulence near the reconnection site, the key electron dynamics appears to be largely laminar.
We have used the high-resolution data of the Magnetospheric Multiscale (MMS) mission dayside phase to identify twenty-one previously unreported encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversal s, and j dot E greater than 0. Three of the new EDR encounters, which occurred within a one-minute-long interval on November 23rd, 2016, are analyzed in detail. These events, which resulted from a relatively low and oscillating magnetopause velocity, contained large electric fields (several tens to hundreds of milliVolts per meter), crescent-shaped electron velocity phase space densities, large currents (greater than 2 microAmperes per square meter), and Ohmic heating of the plasma (near or exceeding 10 nanoWatts per cubic meter). Because of the slow in-and-out motion of the magnetopause, two of these events show the unprecedented mixture of perpendicular and parallel crescents, indicating the first breaking and reconnecting of solar wind and magnetospheric field lines. An extended list of thirty-two EDR or near-EDR events is also included, and demonstrates a wide variety of observed plasma behavior inside and surrounding the reconnection site.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا