ﻻ يوجد ملخص باللغة العربية
Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earths magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASAs Magnetospheric Multiscale (MMS) spacecraft in the magnetotail, where reconnection involves symmetric inflow conditions. The unprecedented electron-scale plasma measurements revealed (1) super-Alfvenic electron jets reaching 20,000 km/s, (2) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures, (3) spatial dimensions of the electron diffusion region implying a reconnection rate of 0.1-0.2. The well-structured multiple layers of electron populations indicate that, despite the presence of turbulence near the reconnection site, the key electron dynamics appears to be largely laminar.
A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across
We have used the high-resolution data of the Magnetospheric Multiscale (MMS) mission dayside phase to identify twenty-one previously unreported encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversal
Magnetospheric Multiscale (MMS) encountered the primary low-latitude magnetopause reconnection site when the inter-spacecraft separation exceeded the upstream ion inertial length. Classical signatures of the ion diffusion region (IDR), including a su
We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The MMS mission provides the first serious opportunity to check if small ion-electron-sca