ﻻ يوجد ملخص باللغة العربية
There has been a large literature of neural architecture search, but most existing work made use of heuristic rules that largely constrained the search flexibility. In this paper, we first relax these manually designed constraints and enlarge the search space to contain more than $10^{160}$ candidates. In the new space, most existing differentiable search methods can fail dramatically. We then propose a novel algorithm named Gradual One-Level Differentiable Neural Architecture Search (GOLD-NAS) which introduces a variable resource constraint to one-level optimization so that the weak operators are gradually pruned out from the super-network. In standard image classification benchmarks, GOLD-NAS can find a series of Pareto-optimal architectures within a single search procedure. Most of the discovered architectures were never studied before, yet they achieve a nice tradeoff between recognition accuracy and model complexity. We believe the new space and search algorithm can advance the search of differentiable NAS.
Group convolution, which divides the channels of ConvNets into groups, has achieved impressive improvement over the regular convolution operation. However, existing models, eg. ResNeXt, still suffers from the sub-optimal performance due to manually d
Differentiable Neural Architecture Search is one of the most popular Neural Architecture Search (NAS) methods for its search efficiency and simplicity, accomplished by jointly optimizing the model weight and architecture parameters in a weight-sharin
In one-shot weight sharing for NAS, the weights of each operation (at each layer) are supposed to be identical for all architectures (paths) in the supernet. However, this rules out the possibility of adjusting operation weights to cater for differen
Stroke order and velocity are helpful features in the fields of signature verification, handwriting recognition, and handwriting synthesis. Recovering these features from offline handwritten text is a challenging and well-studied problem. We propose
How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. navigating a complex environment)? What are the consequences of not utilizing such visual priors in lea