ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron currents from temporal gradients in tilted Dirac cone materials: Electric energy enabled by spacetime geometry

81   0   0.0 ( 0 )
 نشر من قبل Seyed Akbar Jafari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tilted Dirac/Weyl fermions admit a geometric description in terms of an effective spacetime metric. Using this metric, we formulate the hydrodynamics theory for tilted Dirac/Weyl materials in $d+1$ spacetime dimensions. We find that the mingling of spacetime through the off-diagonal components of the metric gives rise to: (i) heat and electric currents proportional to the {em temporal} gradient of temperature, $partial_t T$ and (ii) a non-zero Hall condductance $sigma^{ij}propto zeta^izeta^i$ where $zeta^j$ parametrizes the tilt in $j$th space direction. The finding (i) above suggests that naturally available sources of $partial_t T$ in hot deserts can serve as new concept for the extraction of electricity from the spacetime geometry. We find a further tilt-induced non-Drude contribution to conductivity which can be experimentally disentangles from the usual Drude pole.



قيم البحث

اقرأ أيضاً

Transverse electric (TE) modes can not propagate through the conducting solids. This is because the continuum of particle-hole excitations of conductors contaminates with the TE mode and dampes it out. But in solids hosting tilted Dirac cone (TDC) th at admit a description in terms of a modified Minkowski spacetime, the new spacetime structure remedies this issue and therefore a tilted Dirac cone material (TDM) supports the propagation of an undamped TE mode which is sustained by density fluctuations. The resulting TE mode propagates at fermionic velocities which strongly confines the mode to the surface of the two-dimensional (2D) TDM.
148 - S. Y. Tan , Y. Fang , D. H. Xie 2015
The electronic structure of FeSe thin films grown on SrTiO3 substrate is studied by angle-resolved photoemission spectroscopy (ARPES). We reveal the existence of Dirac cone band dispersions in FeSe thin films thicker than 1 Unit Cell below the nemati c transition temperature, whose apex are located -10 meV below Fermi energy. The evolution of Dirac cone electronic structure for FeSe thin films as function of temperature, thickness and cobalt doping is systematically studied. The Dirac cones are found to be coexisted with the nematicity in FeSe, disappear when nematicity is suppressed. Our results provide some indication that the spin degrees of freedom may play some kind of role in the nematicity of FeSe.
We report measurements of the cyclotron mass in graphene for carrier concentrations n varying over three orders of magnitude. In contrast to the single-particle picture, the real spectrum of graphene is profoundly nonlinear so that the Fermi velocity describing the spectral slope reaches ~3x10^6 m/s at n <10^10 cm^-2, three times the value commonly used for graphene. The observed changes are attributed to electron-electron interaction that renormalizes the Dirac spectrum because of weak screening. Our experiments also put an upper limit of ~0.1 meV on the possible gap in graphene.
The existence of spin-currents in absence of any driving external fields is commonly considered an exotic phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that equilibrium spin currents are a rath er general property of materials with non negligible spin-orbit coupling (SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence of global equilibrium spin currents, which are net bulk spin-currents along specific crystallographic directions of materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen as the analogous of the color degree of freedom and equilibrium spin currents can then be identified with diamagnetic color currents appearing as the response to an effective non-Abelian magnetic field generated by SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but they should nonetheless be carefully taken into account when computing transport spin currents. We provide quantitative estimates of equilibrium spin currents for several systems, specifically metallic surfaces presenting Rashba-like surface states, nitride semiconducting nanostructures and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out the limitations of model approaches showing that first-principles calculations are needed to obtain reliable predictions. We therefore use Density Functional Theory computing the so-called bond currents, which represent a powerful tool to understand the relation between equilibrium currents, electronic structure and crystal point group.
120 - Zahra Faraei , S. A. Jafari 2019
In a graphene-based Josephson junction, the Andreev reflection can become specular which gives rise to propagating Andreev modes. These propagating Andreev modes are essentially charge neutral and therefore they transfer energy but not electric charg e. One main result of this work is that when the Dirac theory of graphene is deformed into a tilted Dirac cone, the breaking of charge conjugation symmetry of the Dirac equation renders the resulting Andreev modes electrically charged. We calculate an otherwise zero charge conductance arising solely from the tilt parameters $veczeta=(zeta_x,zeta_y)$. The distinguishing feature of such a form of charge transport from the charge transport caused by normal electrons is their dependence on the phase difference $phi$ of the two superconductors which can be experimentally extracted by employing a flux bias. Another result concerns the enhancement of Josephson current in a regime where instead of propagating Andreev modes, localized Andreev levels are formed. In this regime, we find enhancement by orders of magnitude of the Josephson current when the tilt parameter is brought closer and closer to $zeta=1$ limit. We elucidate that, the enhancement is due to a combination of two effects: (i) enhancement of number of transmission channels by flattening of the band upon tilting to $zetaapprox 1$, and (ii) a non-trivial dependence on the angle $theta$ of the the tilt vector $veczeta$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا