ﻻ يوجد ملخص باللغة العربية
When neural networks parameters are initialized as i.i.d., neural networks exhibit undesirable forward and backward properties as the number of layers increases, e.g., vanishing dependency on the input, and perfectly correlated outputs for any two inputs. To overcome these drawbacks Peluchetti and Favaro (2020) considered fully connected residual networks (ResNets) with parameters distributions that shrink as the number of layers increases. In particular, they established an interplay between infinitely deep ResNets and solutions to stochastic differential equations, i.e. diffusion processes, showing that infinitely deep ResNets does not suffer from undesirable forward properties. In this paper, we review the forward-propagation results of Peluchetti and Favaro (2020), extending them to the setting of convolutional ResNets. Then, we study analogous backward-propagation results, which directly relate to the problem of training deep ResNets. Finally, we extend our study to the doubly infinite regime where both networks width and depth grow unboundedly. Within this novel regime the dynamics of quantities of interest converge, at initialization, to deterministic limits. This allow us to provide analytical expressions for inference, both in the case of weakly trained and fully trained networks. These results point to a limited expressive power of doubly infinite ResNets when the unscaled parameters are i.i.d, and residual blocks are shallow.
Although ordinary differential equations (ODEs) provide insights for designing network architectures, its relationship with the non-residual convolutional neural networks (CNNs) is still unclear. In this paper, we present a novel ODE model by adding
We present in this paper a model for forecasting short-term power loads based on deep residual networks. The proposed model is able to integrate domain knowledge and researchers understanding of the task by virtue of different neural network building
Dirichlet process mixture models (DPMM) play a central role in Bayesian nonparametrics, with applications throughout statistics and machine learning. DPMMs are generally used in clustering problems where the number of clusters is not known in advance
Multivariate Hawkes processes are commonly used to model streaming networked event data in a wide variety of applications. However, it remains a challenge to extract reliable inference from complex datasets with uncertainty quantification. Aiming tow
There is a growing amount of literature on the relationship between wide neural networks (NNs) and Gaussian processes (GPs), identifying an equivalence between the two for a variety of NN architectures. This equivalence enables, for instance, accurat