ﻻ يوجد ملخص باللغة العربية
Spin-flip excitations in a quantum Hall electron system at fixed filling factor nu=2 are modelled and studied under conditions of a strong Coulomb interaction when the `Landau level mixing is a dominant factor determining the excitation energy. The `one-exciton approach used for the purely electronic excitations in question allows us to describe the Stoner transition from the unpolarized/paramgnet state to the polarized/ferromagnet one. The theoretical results are compared with the available experimental data.
We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means
Cyclotron spin-flip excitation in a nu=2 quantum Hall system, being separated from the ground state by a slightly smaller gap than the cyclotron energy and from upper magnetoplasma excitation by the Coulomb gap [S. Dickmann and I.V. Kukushkin, Phys.
A formalism is presented for treating strongly-correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle--hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) al
Fermi liquid theory has been a foundation in understanding the electronic properties of materials. For weakly interacting two-dimensional (2D) electron or hole systems, electron-electron interactions are known to introduce quantum corrections to the
Enhancement of the electron spin polarization in a correlated two-layer two-dimensional electron system at a total Landau level filling factor of one is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron