ﻻ يوجد ملخص باللغة العربية
Geomagnetic activity is often described using summary indices to summarize the likelihood of space weather impacts, as well as when parameterizing space weather models. The geomagnetic index $text{K}_text{p}$ in particular, is widely used for these purposes. Current state-of-the-art forecast models provide deterministic $text{K}_text{p}$ predictions using a variety of methods -- including empirically-derived functions, physics-based models, and neural networks -- but do not provide uncertainty estimates associated with the forecast. This paper provides a sample methodology to generate a 3-hour-ahead $text{K}_text{p}$ prediction with uncertainty bounds and from this provide a probabilistic geomagnetic storm forecast. Specifically, we have used a two-layered architecture to separately predict storm ($text{K}_text{p}geq 5^-$) and non-storm cases. As solar wind-driven models are limited in their ability to predict the onset of transient-driven activity we also introduce a model variant using solar X-ray flux to assess whether simple models including proxies for solar activity can improve the predictions of geomagnetic storm activity with lead times longer than the L1-to-Earth propagation time. By comparing the performance of these models we show that including operationally-available information about solar irradiance enhances the ability of predictive models to capture the onset of geomagnetic storms and that this can be achieved while also enabling probabilistic forecasts.
We have performed an analysis of case events and statistics of positive ionospheric storms in the dayside region of the equatorial ionization anomaly during recurrent geomagnetic storms (RGSs), which dominate in geomagnetic and ionospheric conditions
Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space
In this study, we investigate thermospheric neutral mass density heating associated with 168 CME-driven geomagnetic storms in the period of May 2001 to September 2011. We use neutral density measured by two low-Earth orbit satellites: CHAMP and GRACE
Geomagnetically induced currents (GICs) are a well-known terrestrial space weather hazard. They occur in power transmission networks and are known to have adverse effects in both high and mid-latitude countries. Here, we study GICs in the Irish power
Eruptive events of solar activity often trigger abrupt variations of the geomagnetic field. Through the induction of electric currents, human infrastructures are also affected, namely the equipment of electric power transmission networks. It was show